Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

This paper revisits the tree constraint introduced in [2] which partitions the nodes of a n-nodes, m-arcs directed graph into a set of node-disjoint anti-arborescences for which only certain nodes can be tree roots. We introduce a new filtering algorithm that enforces generalized arc-consistency in O(n + m) time while the original filtering algorithm reaches O(nm) time. This result allows to tackle larger scale problems involving graph partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global Constraint Catalog: Past, Present and Future. Constraints 12(1), 21–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: A new, simpler linear-time dominators algorithm. ACM Transactions on Programming Languages and Systems 20, 1265–1296 (1998)

    Article  Google Scholar 

  4. Dooms, G., Deville, Y., Dupont, P.: CP(graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Italiano, G.F., Laura, L., Santaroni, F.: Finding Strong Bridges and Strong Articulation Points in Linear Time. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 157–169. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. TOPLAS 1(1) (1979)

    Google Scholar 

  7. Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular constraint. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 178–192. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Quesada, L.: Solving constrained graph problems using reachability constraints based on transitive closure and dominators. PhD thesis, Université Catholique de Louvain (2006)

    Google Scholar 

  11. Quesada, L., van Roy, P., Deville, Y., Collet, R.: Using dominators for solving constrained path problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 73–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Régin, J.-C.: A filtering algorithm for constraints of difference in CSP. In: AAAI 1994, pp. 362–367 (1994)

    Google Scholar 

  13. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI 1996, pp. 209–215 (1996)

    Google Scholar 

  14. Régin, J.-C.: Simpler and incremental consistency checking and arc consistency filtering algorithm for the weighted tree constraint. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Lauridsen, P.W., Alstrup, S., Harel, D., Thorup, M.: Dominators in linear time. SIAM J. Comput. 28(6), 2117–2132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sellmann, M.: Cost-based filtering for shortest path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 287–301. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zampelli, S., Devilles, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for subgraph isomorphism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fages, JG., Lorca, X. (2011). Revisiting the tree Constraint. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics