Abstract
This paper revisits the tree constraint introduced in [2] which partitions the nodes of a n-nodes, m-arcs directed graph into a set of node-disjoint anti-arborescences for which only certain nodes can be tree roots. We introduce a new filtering algorithm that enforces generalized arc-consistency in O(n + m) time while the original filtering algorithm reaches O(nm) time. This result allows to tackle larger scale problems involving graph partitioning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global Constraint Catalog: Past, Present and Future. Constraints 12(1), 21–62 (2007)
Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)
Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: A new, simpler linear-time dominators algorithm. ACM Transactions on Programming Languages and Systems 20, 1265–1296 (1998)
Dooms, G., Deville, Y., Dupont, P.: CP(graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)
Italiano, G.F., Laura, L., Santaroni, F.: Finding Strong Bridges and Strong Articulation Points in Linear Time. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 157–169. Springer, Heidelberg (2010)
Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. TOPLAS 1(1) (1979)
Menana, J., Demassey, S.: Sequencing and counting with the multicost-regular constraint. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 178–192. Springer, Heidelberg (2009)
Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)
Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)
Quesada, L.: Solving constrained graph problems using reachability constraints based on transitive closure and dominators. PhD thesis, Université Catholique de Louvain (2006)
Quesada, L., van Roy, P., Deville, Y., Collet, R.: Using dominators for solving constrained path problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 73–87. Springer, Heidelberg (2005)
Régin, J.-C.: A filtering algorithm for constraints of difference in CSP. In: AAAI 1994, pp. 362–367 (1994)
Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: AAAI 1996, pp. 209–215 (1996)
Régin, J.-C.: Simpler and incremental consistency checking and arc consistency filtering algorithm for the weighted tree constraint. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 233–247. Springer, Heidelberg (2008)
Lauridsen, P.W., Alstrup, S., Harel, D., Thorup, M.: Dominators in linear time. SIAM J. Comput. 28(6), 2117–2132 (1999)
Sellmann, M.: Cost-based filtering for shortest path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)
Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 287–301. Springer, Heidelberg (2004)
Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)
Zampelli, S., Devilles, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for subgraph isomorphism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fages, JG., Lorca, X. (2011). Revisiting the tree Constraint. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)