Skip to main content

Half Reification and Flattening

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

Usually propagation-based constraint solvers construct a constraint network as a conjunction of constraints. They provide propagators for each form of constraint c. In order to increase expressiveness, systems also usually provide propagators for reified forms of constraints. A reified constraint b ↔ c associates a truth value b with a constraint c. With reified propagators, systems can express complex combinations of constraints using disjunction, implication and negation by flattening. In this paper we argue that reified constraints should be replaced by half-reified constraints of the form b → c. Half-reified constraints do not impose any extra burden on the implementers of propagators compared to unreified constraints, they can implement reified propagators without loss of propagation strength (assuming c is negatable), they extend automatically to global constraints, they simplify the handling of partial functions, and can allow flattening to give better propagation behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: A new approach to integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Balas, E.: The prize collecting traveling salesman problem. Networks 19, 621–636 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brand, S., Yap, R.: Towards ”Propagation = Logic + Control”. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 102–106. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Frisch, A., Stuckey, P.: The proper treatment of undefinedness in constraint languages. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 367–382. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design of ESSENCE: A constraint language for specifying combinatorial problems. In: Procs. of IJCAI 2007 (2007)

    Google Scholar 

  7. Jefferson, C., Moore, N.C.A., Nightingale, P., Petrie, K.E.: Implementing logical connectives in constraint programming. Artif. Intell. 174(16-17), 1407–1429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lagerkvist, M.Z., Schulte, C.: Propagator groups. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 524–538. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M., Wallace, M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2, 293–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. PSPlib (Project scheduling problem library), http://129.187.106.231/psplib/

  13. Schulte, C.: Programming deep concurrent constraint combinators. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 215–229. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Schulte, C., Tack, G.: Views and iterators for generic constraint implementations. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Why cumulative decomposition is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–761. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge (1999)

    Google Scholar 

  17. Van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint processins in cc(FD) (1991) (manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feydy, T., Somogyi, Z., Stuckey, P.J. (2011). Half Reification and Flattening. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics