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Abstract. We report new results on the complexity of the valued con-
straint satisfaction problem (VCSP). Under the unique games conjec-
ture, the approximability of finite-valued VCSP is fairly well-understood.
However, there is yet no characterisation of VCSPs that can be solved
exactly in polynomial time. This is unsatisfactory, since such results are
interesting from a combinatorial optimisation perspective; there are deep
connections with, for instance, submodular and bisubmodular minimisa-
tion. We consider the Min and Max CSP problems (i.e. where the cost
functions only attain values in {0, 1}) over four-element domains and
identify all tractable fragments. Similar classifications were previously
known for two- and three-element domains. In the process, we introduce
a new class of tractable VCSPs based on a generalisation of submodular-
ity. We also extend and modify a graph-based technique by Kolmogorov
and Živný (originally introduced by Takhanov) for efficiently obtaining
hardness results in our setting. This allow us to prove the result without
relying on computer-assisted case analyses (which otherwise are fairly
common when studying the complexity and approximability of VCSPs.)
The hardness results are further simplified by the introduction of pow-
erful reduction techniques.

Keywords: constraint satisfaction problems, combinatorial optimisa-
tion, computational complexity, submodularity

1 Introduction

This paper concerns the computational complexity of an optimisation problem
with strong connections to the constraint satisfaction problem (CSP). An in-
stance of the constraint satisfaction problem consists of a finite set of variables,
⋆ Partially supported by the Swedish Research Council (VR) under grant 621-2009-
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a set of values (the domain), and a finite set of constraints. The goal is to de-
termine whether there is an assignment of values to the variables such that all
the constraints are satisfied. CSPs provide a general framework for modelling a
variety of combinatorial decision problems [6, 8].

Various optimisation variations of the constraint satisfaction framework have
been proposed and many of them can be seen as special cases of the valued con-
straint satisfaction problem (VCSP), introduced by Schiex et al. [20]. This is an
optimisation problem which is general enough to express such diverse problems as
Max CSP, where the goal is to maximise the number of satisfied constraints, and
the minimum cost homomorphism problem (Min HOM), where all constraints
must be satisfied, but each variable-value tuple in the assignment is given an in-
dependent cost. To accomplish this, instances of the VCSP assign costs (possibly
infinite) to individual tuples of the constraints. It is then convenient to replace
relations by cost functions, i.e. functions from tuples of the domain to some set
of costs. This set of costs can be relatively general, but much is captured by
using Q≥0 ∪ {∞}, where Q≥0 denotes the set of non-negative rational numbers.
We arrive at the following formal definition.

Definition 1. Let D be a finite domain, and let Γ be a set of functions fi :
Dki → Q≥0∪{∞}. By VCSP(Γ ) we denote the following minimisation problem:

Instance: A set of variables V , and a sum
∑m

i=1 ̺ifi(xi), where ̺i ∈ Q≥0,
fi ∈ Γ , and xi is a list of ki variables from V .

Solution: A function σ : V → D.
Measure: m(σ) =

∑m
i=1 ̺ifi(σ(xi)), where σ(xi) is the list of elements from

D obtained by applying σ component-wise to xi.

The set Γ is often referred to as the constraint language. We will use Γ as our
parameter throughout the paper. For instance, when we say that a class of VCSPs
X is polynomial-time solvable, then we mean that VCSP(Γ ) is polynomial-time
solvable for every Γ ∈ X . Finite-valued functions, i.e. functions with a range
in Q≥0, are sometimes called soft constraints. A prominent example is given by
functions with a range in {0, 1}; they can be used to express instances of the
well-known Min CSP and Max CSP problems (which, for instance, include
Max k-Cut, Max k-Sat, and Nearest Codeword as subproblems). On the
other side we have crisp constraints which represent the standard type of CSP
constraints. These can be expressed by cost functions taking values in {0,∞}.

A systematic study of the computational complexity of the VCSP was ini-
tiated by Cohen et al. [4]; for instance, they prove a complexity dichotomy for
VCSP(Γ ) over two-element domains. This was the starting point for an inten-
sive research effort leading to a large number of complexity results for VCSP:
examples include complete classifications of conservative constraint languages
(i.e. languages containing all unary cost functions) [7, 14, 13], {0, 1} languages
on three elements [11], languages containing a single {0, 1} cost function [12],
and arbitrary languages with {0,∞} cost functions [22]. We note that some
of these results have been proved by computer-assisted search—something that
drastically reduces the readability, and insight gained from the proofs. We also
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note that there is no generally accepted conjecture stating which VCSPs are
polynomial-time solvable.

The picture is clearer when considering the approximability of finite-valued
VCSP. Raghavendra [19] have presented algorithms for approximating any finite-
valued VCSP. These algorithms achieve an optimal approximation ratio for the
constraint languages that cannot be solved to optimality in polynomial time,
given that the unique games conjecture (UGC) is true. For the constraint lan-
guages that can be solved to optimality, one gets a PTAS from these algorithms.
Furthermore, no characterisation of the set of constraint languages that can be
solved to optimality follows from Raghavendra’s result. Thus, Raghavendra’s
result does not imply the complexity results discussed above (not even condi-
tionally under the UGC).

The goal of this paper is to prove a dichotomy result for VCSP with {0, 1}
cost functions over four-element domains: we show that every such problem is
either solvable in polynomial time or NP-hard. Such a dichotomy result is not
known for CSPs on four-element domains (and, consequently, not for unrestricted
VCSPs on four-element domains). Our result proves that, in contrast to the two-
element, three-element, and conservative case, submodularity is not the only
source of tractability. In order to outline the proof, let Γ denote a constraint
language with {0, 1} cost functions over a four-element domain D. We will need
two tractability results in our classification. The first one is well-known: if every
function in Γ is submodular on a chain (i.e. a total ordering of D), then VCSP(Γ )
is solvable in polynomial time. The second result is new and can be found in
Section 3: we introduce 1-defect chain multimorphisms and prove that if Γ has
such a multimorphism, then VCSP(Γ ) is tractable. A multimorphism is, loosely
speaking, a pair of functions such that Γ satisfies certain invariance properties
under them. The algorithm we present is based on a combination of submodular
and bisubmodular minimisation [9, 17, 21].

The hardness part of the proof consists of four parts (Sections 4–7). We
begin by introducing some tools in Section 4 and 5. Section 4 concerns the
problem of adding (crisp) constant unary relations to Γ without changing the
computational complexity of the resulting problem. The main tool for doing
this is using the concept of indicator problems introduced by Jeavons et al.
[10] (see also Cohen et al. [3]). Section 5 introduces a graph construction for
studying Γ . In principle, this graph provides information about the complexity
of VCSP(Γ ) based on the two-element sublanguages of Γ . Similar graphs has
been used repeatedly in the study of VCSP, cf. [1, 14, 22]. Equipped with these
tools, we determine the complexity of VCSP(Γ ) over a four-element domain in
Section 6. The graph introduced in Section 5 allows us to prove that, when Γ is
a core (cf. Section 4), VCSP(Γ ) is polynomial-time solvable if and only if Γ is
submodular on a chain or Γ has a 1-defect chain multimorphism (Theorem 26).
Some proofs of intermediate results are deferred to Section 7.
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2 Preliminaries

Throughout this paper, we will assume that Γ is a finite set of {0,1}-valued
functions. By Min CSP(Γ ) we denote the problem VCSP(Γ ). It turns out to be
convenient to introduce a generalisation of this problem in which we allow addi-
tional constraints on the solutions. From a VCSP perspective, this means that
we allow crisp as well as {0, 1}-valued cost functions. To make the distinction
clear, and since we will not be using any mixed cost functions, we represent the
crisp constraints with relations instead of {0,∞}-valued cost functions.

Definition 2. Let Γ be a set of {0, 1}-valued functions on a domain D, and let
∆ be a set of finitary relations on D. By Min CSP(Γ,∆) we denote the following
minimisation problem:

Instance: A Min CSP(Γ )-instance I, and a finite set of constraint applications
{(yj ;Rj)}, where Rj ∈ ∆ and yj is a matching list of variables from V .

Solution: A solution σ to I such that σ(yj) ∈ Rj for all j.
Measure: The measure of σ as a solution to I.

We will generally omit the parenthesis surrounding singletons in unary rela-
tions, as in the following definition: let CD = {{d} | d ∈ D} be the set of constant
unary relations over D.

2.1 Expressive power and weighted pp-definitions

It is often possible to enrich a set of functions Γ without changing the compu-
tational complexity of Min CSP. In this paper, we will make use two distinct,
but related notions aimed at this purpose.

Definition 3. Let I be an instance of Min CSP(Γ,∆), and let x = (x1, . . . , xs)
be a sequence of distinct variables from V (I). Let

πxOptsol(I) = {(σ(x1), . . . , σ(xs)) | σ is an optimal solution to I },

i.e. the projection of the set of optimal solutions onto x. We say that such a
relation has a weighted pp-definition in (Γ,∆). Let 〈Γ,∆〉w denote the set of
relations which have a weighted pp-definition in (Γ,∆).

For an instance J of Min CSP, we define Opt(J ) to be the optimal value of a
solution to J , and to be undefined if no solution exists. The following definition is
a variation of the concept of the expressive power of a valued constraint language,
see for example Cohen et al. [4].

Definition 4. Let I be an instance of Min CSP(Γ,∆), and let x = (x1, . . . , xk)
be a sequence of distinct variables from V (I). Define the function Ix : Dk → Q≥0

by letting Ix(a1, . . . , ak) = Opt(I ∪ {(xi; {ai}) | 1 ≤ i ≤ k}). We say that Ix is
expressible over (Γ,∆). Let 〈Γ,∆〉fn denote the set of total functions expressible
over (Γ,∆).
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Proposition 5. Let Γ ′ ⊆ 〈Γ,∆〉fn and ∆′ ⊆ 〈Γ,∆〉w be finite sets. Then,
Min CSP(Γ ′, ∆′) is polynomial-time reducible to Min CSP(Γ,∆).

Proof. The reduction from Min CSP(Γ ′, ∆′) to Min CSP(Γ,∆′) is a special
case of Theorem 3.4 in [4]. We allow weights as a part of our instances, but this
makes no essential difference.

For the remaining part, we will assume that ∆′ \∆ contains a single relation
R = πxOptsol(J ). The case when ∆′ \ ∆ = {R1, . . . , Rk}, for k > 1 can be
handled by eliminating one relation at a time using the same argument. Let I ′

be an instance of Min CSP(Γ,∆′). For each application (ui;R), i = 1, . . . , t, we
create a copy Ji of J in which the variables x have been replaced by ui. We now
create an instance I of Min CSP(Γ,∆) as follows: let V (I) = (

⋃t
i=1 V (Ji)) ∪

V (I ′), S(I) = S(I ′)+M ·
∑t

i=1 S(Ji), and let the set of constraint applications
of I consist of all applications from I ′ apart from those involving the relation
R, and all applications from Ji, i = 1, . . . , t. We will choose M large enough,
so that if I ′ is satisfiable, then in any optimal solution σ to I, the restriction
of σ to the set V (Ji) is forced to be an optimal solution to the instance Ji.
It then follows that σ(ui) ∈ R, so we can recover an optimal solution to I ′

from σ. The value of M is chosen as follows: if all solutions to J have the same
measure, we can let M = 0. Otherwise, let δ > 0 be the minimal difference in
measure between a sub-optimal solution, and an optimal solution to J . Assume
that S(I ′) =

∑m
i=1 ̺ifi(xi), and let U =

∑m
i=1 ̺i. Note that if σ is any solution

to the instance obtained from I ′ by removing all constraint applications, then
m(σ) ≤ U . We can then let M = (U + 1)/δ; the representation size of M is
linearly bounded in the size of the instance I ′. It is easy to check that if I is
unsatisfiable, or if Opt(I) > U+M ·t·Opt(J ), then I ′ is unsatisfiable. Otherwise
Opt(I ′) = Opt(I)−M · t · Opt(J ). ⊓⊔

2.2 Multimorphisms and submodularity

We now turn our attention to multimorphisms and tractable minimisation prob-
lems. Let D be a finite set. Let f : Dk → D be a function, and let x1, . . . ,xk ∈
Dn, with components xi = (xi1, . . . , xin). Then, we let f(x1, . . . ,xk) denote the
n-tuple (f(x11, . . . , xk1), . . . , f(x1n, . . . , xkn)).

A (binary) multimorphism of Γ is a pair of functions f, g : D2 → D such
that for any h ∈ Γ , and matching tuples x and y,

h(f(x,y)) + h(g(x,y)) ≤ h(x) + h(y). (1)

The concept of multimorphisms was introduced by Cohen et al. [4] as an exten-
sion of the notion of polymorphisms to the analysis of the VCSP problem.

Definition 6 (Multimorphism Function Minimisation). Let X be a finite
set of triples (Di; fi, gi), where Di is a finite set and fi, gi are functions mapping
D2

i to Di. MFM(X) is a minimisation problem with
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Instance: A positive integer n, a function j : [n] → [|X |], and a function h :
D → Z where D =

∏n
i=1 Dj(i). Furthermore,

h(x) + h(y) ≥ h(fj(1)(x1, y1), fj(2)(x2, y2), . . . , fj(n)(xn, yn)) +

h(gj(1)(x1, y1), gj(2)(x2, y2), . . . , gj(n)(xn, yn))

for all x,y ∈ D. The function h is given to the algorithm as an oracle, i.e.,
for any x ∈ D we can query the oracle to obtain h(x) in unit time.

Solution: A tuple x ∈ D.
Measure: The value of h(x).

For a finite set X we say that MFM(X) is oracle-tractable if it can be solved
in time O(nc) for some constant c. It is not hard to see that if (f, g) is a mul-
timorphism of Γ , and MFM(D; f, g) is oracle-tractable, then Min CSP(Γ ) is
tractable.

We now give two examples of oracle-tractable problems. A partial order on
D is called a lattice if every pair of elements a, b ∈ D has a greatest lower bound
a∧b (meet) and a least upper bound a∨b (join). A chain on D is a lattice which
is also a total order.

For i = 1, . . . , n, let Li be a lattice on Di. The product lattice L1×· · ·×Ln is
defined on the set D1×· · ·×Dn by extending the meet and join component-wise:
for a = (a1, . . . , an) and b = (b1, . . . , bn), let a ∧ b = (a1 ∧ b1, . . . , an ∧ bn), and
let a ∨ b = (a1 ∨ b1, . . . , an ∨ bn).

A function f : Dk → Z is called submodular on the lattice L = (D;∧,∨) if

f(a ∧ b) + f(a ∨ b) ≤ f(a) + f(b)

for all a, b ∈ Dk. A set of functions Γ is said to be submodular on L if every func-
tion in Γ is submodular on L. This is equivalent to (∧,∨) being a multimorphism
of Γ . It follows from known algorithms for submodular function minimisation
that MFM(X) is oracle-tractable for any finite set X of finite distributive lattices
(e.g. chains) [9, 21].

The second example is strongly related to submodularity, but here we use a
partial order that is not a lattice to define the multimorphism. Let D = {0, 1, 2},
and define the functions u, v : D2 → D by letting u(x, y) = min{x, y}, v(x, y) =
max{x, y} if {x, y} 6= {1, 2}, and u(x, y) = v(x, y) = 0 otherwise. We say that
a function h : Dk → Z is bisubmodular if h has the multimorphism (u, v). It
is possible to minimise a k-ary bisubmodular function in time polynomial in k,
provided that evaluating h on a tuple is a primitive operation [17].

3 A New Tractable Class

In this section, we introduce a new multimorphism which ensures tractability
for Min CSP (and more generally for VCSP).

Definition 7. Let b and c be two distinct elements in D. Let (D;<) be a partial
order which relates all pairs of elements except for b and c. Assume that f, g :
D2 → D are two commutative functions satisfying the following conditions:
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– If {x, y} 6= {b, c}, then f(x, y) = x ∧ y and g(x, y) = x ∨ y.
– If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) < g(x, y).

We call (D; f, g) a 1-defect chain (over (D;<)), and say that {b, c} is the defect
of (D; f, g). If a function has the multimorphism (f, g), then we also say that
(f, g) is a 1-defect chain multimorphism.

Three types of 1-defect chains are shown in Fig. 1(a–c). Note this is not an
exhaustive list, e.g. for |D| > 4, there are 1-defect chains similar to Fig. 1(b),
but with f(b, c) < g(b, c) < b, c. When |D| = 4, type (b) is precisely the product
lattice shown in Fig. 1(d). We denote this lattice by Lad

(a)

f(b, c)

g(b, c)

b c

(b)

f(b, c)

b c

g(b, c)

(c)

g(b, c)

f(b, c)

b c

(d)

a

b c

d

Fig. 1. Three types of 1-defect multimorphisms with defect {b, c}. (a) f(b, c) < g(b, c) <
b, c. (b) f(b, c) < b, c < g(b, c). (c) b, c < f(b, c) < g(b, c). (d) The Hasse diagram of the
lattice Lad, a special case of (b).

Example 8. Let D = {a, b, c, d}, and assume that (D; f, g) is a 1-defect chain,
with defect {b, c}, and that a = f(b, c), d = g(b, c). If a < b, c < d, then f and
g are the meet and join of Lad, cf. Fig. 1(d). When a < d < b, c we have the
situation in Fig. 1(a), and when b, c < a < d we have the situation in Fig. 1(c).
In the two latter cases, f and g are given by the two following multimorphisms
(rows and columns are listed in the order a, b, c, d, e.g. g1(c, d) = c):

f1 :

a a a a
a b a d
a a c d
a d d d

g1 :

a b c d
b b d b
c d c c
d b c d

f2 :

a b c a
b b a b
c a c c
a b c d

g2 :

a a a d
a b d d
a d c d
d d d d

The proof of tractability for languages with 1-defect chain multimorphisms
is inspired by Krokhin and Larose’s [15] result on maximising supermodular
functions on Mal’tsev products of lattices. First we will need some notation and
a general lemma on oracle-tractability of MFM problems.

For an equivalence relation θ on D we use x[θ] to denote the equivalence class
containing x ∈ D. The relation θ is a congruence on (D; f, g), if f(x1, y1)[θ] =
f(x2, y2)[θ] and g(x1, y1)[θ] = g(x2, y2)[θ] whenever x1[θ] = x2[θ] and y1[θ] =
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y2[θ]. We use D/θ to denote the set {x[θ] | x ∈ D} and f/θ : (D/θ)2 → D/θ to
denote the function (x[θ], y[θ]) 7→ f(x, y)[θ].

Lemma 9. Let f, g be two functions that map D2 to D. If there is a congruence
relation θ on (D; f, g) such that 1) MFM(D/θ; f/θ, g/θ) is oracle-tractable; and
2) MFM({(X ; f |X , g|X) | X ∈ D/θ}) is oracle-tractable, then MFM(D; f, g) is
oracle-tractable.

Proof. Let h : Dn → Z be the function we want to minimise. We define a new
function h′ : (D/θ)n → Z by

h′(z1, z2, . . . , zn) = min
xi∈zi

h(x1, x2, . . . , xn).

It is clear that minz∈(D/θ)n h′(z) = minx∈Dn h(x). By assumption 2 in the
statement of the lemma we can compute h′ given z1, z2, . . . , zn. To simplify the
notation we let u = f/θ and v = g/θ. We will now prove that h′ is an instance
of MFM(D/θ;u, v).

Let x,y ∈ Dk and choose x′
i ∈ xi[θ] and y′i ∈ yi[θ] so that h′(x[θ]) = h(x′)

and h′(y[θ]) = h(y′). We then have

h′(x[θ]) + h′(y[θ]) = h(x′) + h(y′) (2)

≥ h(f(x′,y′)) + h(g(x′,y′)) (3)

≥ h′(f(x′,y′)[θ]) + h′(g(x′,y′)[θ]) (4)

= h′(f(x,y)[θ]) + h′(g(x,y)[θ])) (5)

= h′(u(x[θ],y[θ])) + h′(v(x[θ],y[θ])). (6)

Here (2) follows from our choice of x′ and y′, (3) follows from the fact that h
is an instance of MFM(D; f, g), (4) follows from the definition of h′, and finally
(5) and (6) follows as θ is a congruence relation of f and g. Hence, h′ is an
instance of MFM(D/θ;u, v) and can be minimised in polynomial time by the
first assumption in the lemma. ⊓⊔

Armed with this lemma and the oracle-tractability of submodular and bisub-
modular functions described in the previous section, we can now present a new
tractable class of Min CSP-problems.

Proposition 10. If Γ has a 1-defect chain multimorphism, then Min CSP(Γ )
is tractable.

Proof. Assume that Γ has a 1-defect chain multimorphism (f, g) over (D;<)
with defect {b, c}. We prove that MFM(D; f, g) is oracle-tractable.

Assume that b and c are maximal elements, i.e. x < b, c for all x ∈ D\{b, c}. In
this case the equivalence relation θ with classes A = D\{b, c}, B = {b}, C = {c}
is a congruence relation of (D; f, g). Furthermore, MFM({A,B,C}; f/θ, g/θ) and
MFM(A; f |A, g|A) are oracle-tractable [17, 21]. It now follows from Lemma 9 that
MFM(D; f, g) is oracle-tractable. The same argument works for the case when
b and c are minimal elements.
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If f(b, c) < g(b, c) < b, c, but b and c are not maximal, then we can use the
congruence relation θ′ with classes A = {x | x ≤ b or x ≤ c} and B = D \ A.
Here, ({A,B}; f/θ′, g/θ′) and (B; f |B, g|B) are chains, and (A; f |A, g|A) is a
1-defect chain of the previous type. One can show that when MFM(X) and
MFM(Y ) are both oracle-tractable, then so is MFM(X ∪ Y ). Combining this
with the technique used above, we can now solve the minimisation problem. An
analogous construction works in the case when b, c < f(b, c), g(b, c), using the
congruence consisting of the class {x | x ≥ b or x ≥ c} and its complement.
Finally, when f(b, c) < b, c < g(b, c), we can use the congruence relation θ′′ with
classes B = {x | x ≤ b} and C = {x | x ≥ c}. Here, ({B,C}, f/θ′′, g/θ′′),
(B, f |B, g|B), and (C, f |C , g|C) are all chains and thus the MFM problem for
these triples is oracle-tractable [21]. ⊓⊔

We now turn to prove a different property of functions with 1-defect chain
multimorphisms. It is based on the following result for submodular functions
on chains, which was derived by Queyranne et al. [18] from earlier work by
Topkis [23] (See also Burkard et al. [2]). This formulation is due to Deineko et
al. [7]:

Lemma 11. A function f : Dk → Z is submodular on a chain (D;∧,∨) if and
only if the following holds: every binary function obtained from f by replacing
any given k − 2 variables by any constants is submodular on this chain.

It is straightforward to extend this lemma to products of chains, such as Lad.
Here, we outline the proof of the corresponding property for arbitrary 1-defect
chains, which will be needed in Section 6. We will use the following observation.

Definition 12. A binary operation f : D2 → D is called a 2-semilattice if it is
idempotent, commutative, and f(f(x, y), x) = f(x, y) for all x, y ∈ D.

Proposition 13. Let (D; f, g) be a 1-defect chain with a defect on {b, c}.

1. If f(b, c) < b, c, then f is a 2-semilattice and g(f(x, y), x) = x for x, y ∈ D.
2. If g(b, c) > b, c, then g is a 2-semilattice and f(g(x, y), x) = x for x, y ∈ D.
3. For x,y ∈ {b, c}k, we have {f(f(x,y),x), g(f(x,y),x)} = {f(x,y),x} and

{g(g(x,y),x), f(g(x,y),x)} = {g(x,y),x}.

Proof. For {x, y} 6= {b, c}, the equalities f(f(x, y), x) = f(x, y) and g(f(x, y), x) =
x follow from the underlying partial order. Assume instead that {x, y} = {b, c},
and that f(x, y) < x, y. Since {f(x, y), x} 6= {b, c}, we have that f(f(x, y), x) is
the greatest lower bound of f(x, y) and x, which is f(x, y). We also have that
g(f(x, y), x) is the lowest upper bound of f(x, y) and x, which is x. An analogous
argument proves (2).

The first equality of (3) follows from (1) if f(b, c) < b, c, and the second
equality follows from (2) if g(b, c) > b, c. At least one of f(b, c) < b, c and g(b, c) >
b, c holds. If both holds, there is nothing to prove, so assume that f(b, c) < b, c,
but g(b, c) < b, c. We then have g(g(x, y), x) = x and f(g(x, y), x) = g(x, y)
for {x, y} = {b, c}, so the second equality of (3) also holds. The remaining case
follows similarly. ⊓⊔
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Lemma 14. A function h : Dk → Z, k ≥ 2, has the 1-defect chain multimor-
phism (f, g) if and only if every binary function obtained from h by replacing
any given k − 2 variables by any constants has the multimorphism (f, g).

Proof. Let {b, c} be the defect of (f, g). We prove the statement for the case
f(b, c) < b, c. The other case follows analogously.

Every function obtained from h by fixing a number of variables is clearly
invariant under every multimorphism of h.

For the opposite direction, assume that h does not have the multimorphism
(f, g). We want to prove that there exist vectors x,y ∈ Dk such that

h(x) + h(y) < h(f(x,y)) + h(g(x,y)), (7)

with dH(x,y) = 2, where dH denotes the Hamming distance on Dk, i.e. the
number of coordinates in which x and y differ.

Assume to the contrary that the result does not hold. We can then choose a
function h of minimal arity such that

min{ dH(x,y) | x and y satisfy (7) } > 2.

The arity of h must in fact be equal to the least dH(x,y); otherwise, we could
obtain a function h′ of strictly smaller arity by fixing the variables in h on which
x and y agree. This would contradict the minimality in the choice of h.

We will first show that it is possible to choose x and y so that {xi, yi} 6= {b, c}
for all i. Let k1, k2 ≥ 1 so that k1 + k2 = k, and let (x1;x2), (y1;y2) ∈ Dk be
two vectors with dH((x1;x2), (y1;y2)) = k, satisfying (7). Now, assume that
(x1;x2), (y1;y2) ∈ {b, c}k. We then have

h(x1;x2) + h(y1;y2) < h(f(x1,y1); f(x2;y2)) + h(g(x1,y1); g(x2,y2))

Since both dH((x1;x2), (x1;y2)) and dH((y1;y2), (x1;y2)) are strictly less that
the arity of h, we have by assumption

h(x1;x2) + h(x1;y2) ≥ h(x1; f(x2,y2)) + h(x1; g(x2,y2)), and

h(y1;y2) + h(x1;y2) ≥ h(f(x1,y1);y2) + h(g(x1,y1);y2).

By combining these inequalities, we get

h(x1; f(x2,y2)) + h(f(x1,y1);y2) + h(x1; g(x2,y2)) + h(g(x1,y1);y2)

< h(f(x1,y1); f(x2;y2)) + h(x1,y2) + h(g(x1,y1); g(x2,y2)) + h(x1,y2).

Let x = (x1; f(x2,y2)), y = (f(x1,y1);y2), x′ = (x1; g(x2,y2)), and y′ =
(g(x1,y1);y2). By Proposition 13(3), we have

{f(x,y), g(x,y)} = {(x1;y2), (f(x1,y1); f(x2,y2))}, and

{f(x′,y′), g(x′,y′)} = {(x1;y2), (g(x1,y1); g(x2,y2))}.

Hence, we can rewrite the previous inequality:

h(x) + h(y) + h(x′) + h(y′)
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< h(f(x,y)) + h(g(x,y)) + h(f(x′,y′)) + h(g(x′,y′)).

It follows that either the pair x and y, or the pair x′ and y′ satisfies condition
(7). Furthermore, {xi, yi} 6= {b, c} and {x′

i, y
′
i} 6= {b, c}, for all i.

If instead we have vectors x and y satisfying (7) such that {xi, yi} 6= {b, c}
for some, but not all i, then we proceed as follows. Note that {xi, yi} 6= {b, c}
implies {f(xi, yi), g(xi, yi)} = {xi, yi}. Without loss of generality, we may there-
fore assume that x = (x1;x2),y = (y1;y2) ∈ Dk, with x1,y1 ∈ Dk1 for k1 ≥ 1,
are such that f(x1,y1) = x1 and g(x1,y1) = y1, possibly by first exchanging
x and y. For these vectors, condition (7) now reads:

h(x1;x2) + h(y1;y2) < h(x1; f(x2,y2)) + h(y1; g(x2,y2)).

Due to the minimality of h’s arity, we must have

h(y1;x2) + h(y1;y2) ≥ h(y1; f(x2,y2)) + h(y1; g(x2,y2)).

We therefore have

h(x1;x2) + h(y1; f(x2,y2)) < h(x1; f(x2,y2)) + h(y1;x2).

Let x = (x1;x2) and y = (y1; f(x2,y2)). By Proposition 13(1), f is a 2-
semilattice, so we have f(f(x2,y2),x2) = f(x2,y2), and thus

(x1; f(x2;y2)) = (x1; f(f(x2,y2),x2))

= f((y1; f(x2,y2)), (x1;x2)) = f(y,x).

Furthermore, g(f(x2,y2),x2) = x2, so

(y1;x2) = (y1; g(f(x2,y2),x2)) = g((y1; f(x2,y2)), (x1;x2)) = g(y,x).

We therefore conclude that

h(x) + h(y) < h(f(x,y)) + h(g(x,y)),

so that condition (7) holds for x and y with {xi, yi} 6= {b, c} for all i. From now
on, we assume that x and y are chosen in this way.

Let D′ = D \ {b, c} ∪ {B}. For each i, let ϕi : D
′ → D be an injection which

fixes D \ {b, c}, and sends B to b or c in such a way that {xi, yi} ⊆ ϕi(D).
Let (D′; f ′, g′) be the chain defined by x <′ y if x, y 6= B and x < y, x <′ B
if x < b, c, and B <′ y if b, c < y. Then, ϕi(f

′(x, y)) = f(ϕi(x), ϕi(y)), and
ϕi(g

′(x, y)) = g(ϕi(x), ϕi(y)), for all i. Let ϕ(z) = (ϕ1(z1), . . . , ϕk(zk)), and let
x′,y′ ∈ (D′)k be such that ϕ(x′) = x and ϕ(y′) = y. Define h′(z′) = h(ϕ(z′)).
Then,

h′(x′) + h′(y′) = h(x) + h(y) < h(f(x,y)) + h(g(x,y))

= h′(f ′(x′,y′)) + h′(g′(x′,y′)).

It follows that h′ is not submodular on (D′, f ′, g′). By Lemma 11, there are
elements z′,w′ ∈ (D′)k with dH(z′,w′) = 2 such that h′(z′) + h′(w′) <
h′(f ′(z′,w′)) + h′(g′(z′,w′)). Hence,

h(ϕ(z′)) + h(ϕ(w′)) = h′(z′) + h′(w′) < h′(f ′(z′,w′)) + h′(g′(z′,w′))

= h(f(ϕ(z′), ϕ(w′))) + h(g(ϕ(z′), ϕ(w′))),

and dH(ϕ(z′), ϕ(w′)) = 2. This contradicts the original choice of h. ⊓⊔
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4 Endomorphisms, cores and constants

In this section, we show that under a natural condition, it is possible to add
constant unary relations to Γ without changing the computational complexity
of the corresponding Min CSP-problem. Let h : Dk → {0, 1}. A function g :
D → D is called an endomorphism of h if for every k-tuple (x1, . . . , xk) ∈ Dk, it
holds that h(x1, . . . , xk) = 0 =⇒ h(g(x1), . . . , g(xk)) = 0. The function g is an
endomorphism of Γ if it is an endomorphism of each function in Γ . The set of all
endomorphisms of Γ is denoted by End (Γ ). A bijective endomorphism is called
an automorphism. The automorphisms of Γ form a group under composition.

Definition 15. A set of functions, Γ , is said to be a core if all of its endomor-
phisms are injective.

The idea is that if Γ it not a core, then we can apply a non-injective endomor-
phism to every function in Γ , and obtain a polynomial-time equivalent problem
on a strictly smaller domain. We can then use results previously obtained for
smaller domains [4, 11]. Thus, we can restrict our attention to the case when Γ
is a core.

Jeavons et al. [10] defined the notion of an indicator problem of order k for
CSPs. We will exploit indicator problems of order 1 here, adapted to the setting
of Min CSP.

Definition 16. Let Γ be a finite set of {0, 1}-valued functions over D. Let XD

denote the set containing a variable xd for each d ∈ D, and for a = (a1, . . . , ak) ∈
Dk, let xa = (xa1

, . . . xak
) ∈ Xk

D. The indicator problem IP(Γ ) is defined as the
instance of Min CSP(Γ ) with variables XD, and sum

∑

fi∈Γ

∑

a∈f−1

i
(0) fi(xa),

where ki is the arity of the function fi.

Let ι : D → XD be the function defined by ι(d) = xd. Theorem 3.5 in [10]
implies the following property of IP(Γ ):

Proposition 17. For any finite set of functions, Γ , the set of optimal solutions
to IP(Γ ) is equal to {σ : XD → D | σ ◦ ι ∈ End (Γ )}.

The proof of the following result follows the lines of similar results for related
problems, such as the CSP decision problem.

Proposition 18. Let Γ be a core over D. Then, Min CSP(Γ, CD) is polynomial-
time reducible to Min CSP(Γ ).

Proof. Let J be an instance of Min CSP(Γ, CD). The only way for J to be
unsatisfiable is if it contains two contradicting constraint applications (y; {a})
and (y; {b}), with a 6= b. This is easily checked in polynomial time.

Otherwise, Let x be a list of the variables XD, and let R = πxOptsol(IP(Γ )).
Now modify J to an instance J ′ of Min CSP(Γ,R) as follows. Add the variables
in XD to V (J ′), and add the constraint application (x;R). Furthermore, remove
each constraint (y; {a}), and replace y by xa throughout the instance. Let σ′ be
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an optimal solution to J ′. Since Γ is a core, g = σ′|XD
◦ ι is an automorphism

of Γ , and so is its inverse, g−1. Hence, σ = g−1 ◦σ′ is also an optimal solution to
J ′. From σ we easily recover a solution to J of equal measure, and conversely,
any solution to J can be interpreted as a solution to J ′. It follows that we
have a reduction from Min CSP(Γ, CD) to Min CSP(Γ,R). By Proposition 5,
we finally have a reduction from Min CSP(Γ,R) to Min CSP(Γ ). ⊓⊔

For a, b ∈ D, let eab : D → D denote the function eab(a) = b and eab(x) = x
for x 6= a.

Lemma 19. If eab 6∈ End (Γ ), then 〈Γ, CD〉fn contains a unary {0, 1}-valued
function u such that u(a) = 0 and u(b) = 1.

Proof. Let h : Dk → {0, 1} be a function in Γ , and a1, . . . , ak ∈ D be elements
such that h(a1, . . . , ak) = 0, but h(eab(a1), . . . , eab(ak)) = 1.

Let J be the instance of Min CSP(Γ, CD) with variables V (J ) = XD, sum
S(J ) = h(xa1

, . . . , xak
), and constraint applications (xd; {d}) for d 6= a. Then,

u = Jxa
is a unary function in 〈Γ, CD〉fn, with u(a) = 0 and u(b) = 1. ⊓⊔

5 A Graph of Partial Multimorphisms

Let Γ be a core over D. In this section, we define a graph G = (V,E) which
encodes either the NP-hardness of Min CSP(Γ, CD) or provides a multimor-
phism for the binary functions in 〈Γ, CD〉fn. The graph is a variation of a graph
defined by Kolmogorov and Živný [14], with changes made to accommodate for
additional multimorphisms.

Let V be the set of partial functions (f, g) : D2 → D2 such that

– f and g are defined on a subset {a, b} ⊆ D;
– f and g are idempotent and commutative; and
– {f(a, b), g(a, b)} = {a, b} or {f(a, b), g(a, b)} ∩ {a, b} = ∅.

We do allow a = b in the definition of V , i.e. there is precisely one vertex for
each singleton in D. For a, b ∈ D, we let G[a, b] denote the graph induced by the
set of vertices defined on {a, b}. Let (f1, g1) ∈ G[a1, b1] and (f2, g2) ∈ G[a2, b2].
There is an edge in E between (f1, g1) and (f2, g2) if there is a binary function
h ∈ 〈Γ, CD〉fn such that

min{h(a1, a2) + h(b1, b2), h(a1, b2) + h(b1, a2)} <

h(f1(a1, b1), f2(a2, b2)) + h(g1(a1, b1), g2(a2, b2)). (8)

The following lemma shows how G can be used to construct multimorphisms of
binary functions in 〈Γ, CD〉fn:

Lemma 20. Let I ⊆ V be an independent set in G with precisely one ver-
tex (f{x,y}, g{x,y}) from each subgraph G[x, y]. Then, every binary function h ∈
〈Γ, CD〉fn has the multimorphism (f, g) defined by f(x, y) = f{x,y}(x, y) and
g(x, y) = g{x,y}(x, y).
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Proof. Assume to the contrary that (f, g) is not a multimorphism of h. Then,
there are tuples (a1, a2), (b1, b2) ∈ D2 such that

h(a1, a2) + h(b1, b2) < h(f(a1, b1), f(a2, b2)) + h(g(a1, b1), g(a2, b2)).

But this would imply that {(f{a1,b1}, g{a1,b1}), (f{a2,b2}, g{a2,b2})} ∈ E, which is
a contradiction since I is an independent set. ⊓⊔

For distinct a, b ∈ D, let
−→
ab denote the vertex (f, g) ∈ G[a, b] such that

f(a, b) = f(b, a) = a and g(a, b) = g(b, a) = b. We say that such a vertex is
conservative. Let V ′ denote the set of all conservative vertices, and let G′ = G[V ′]
be the subgraph of G induced by V ′. Let V ′

Γ ⊆ V ′ be the set of vertices −→xy such
that {x, y} ∈ 〈Γ, CD〉w. For conservative vertices

−−→
a1b1 and

−−→
a2b2, condition (8)

reduces to:

h(a1, b2) + h(b1, a2) < h(a1, a2) + h(b1, b2). (9)

For a vertex x = (f, g), we let x denote the vertex (g, f). It follows immedi-
ately from (8) that {x, y} ∈ E iff {x, y} ∈ E. Next, we prove a number of basic
properties of the graph G.

Lemma 21. If {
−−→
a1b1,

−−→
a2b2} ∈ E, then there exists a function h ∈ 〈Γ, CD〉fn

such that h(a1, b2) = h(b1, a2) < h(a1, a2) = h(b1, b2).

Proof. By definition of G, we can find f ∈ 〈Γ, CD〉fn such that

f(a1, b2) + f(b1, a2) < f(a1, a2) + f(b1, b2). (10)

Since Γ is assumed to be a core, Lemma 19 is applicable for all choices of a and b.
Using the unary functions obtained from this lemma, it is possible to ensure that
the inequality in (10) holds for a function f with f(a1, b2) = f(a2, b1). We will
also assume that f(a1, a2) ≥ f(b1, b2) so that γ = (f(a1, a2) − f(b1, b2))/2 ≥ 0.
Let fa1

and fa2
be unary functions such that fa1

(a1) < fa1
(b1) and fa2

(a2) <
fa2

(b2), and let α = fa1
(b1)− fa1

(a1) and β = fa2
(b2)− fa2

(a2), and note that
α, β > 0. Now, define

h(x, y) = f(x, y) + γ
(

α−1fa1
(x) + β−1fa2

(y)
)

.

The function h satisfies the inequality h(a1, b2)+h(b1, a2) < h(a1, a2)+h(b1, b2),
and furthermore,

h(a1, a2)− h(b1, b2) = f(a1, a2)− f(b1, b2)+

+ γ

(

fa1
(a1)− fa1

(b1)

α
+

fa2
(a2)− fa2

(b2)

β

)

=

= f(a1, a2)− f(b1, b2) + γ(−α/α− β/β) = 0,
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and

h(a1, b2)− g(b1, a2) = f(a1, b2)− f(b1, a2)+

+ γ

(

fa1
(a1)− fa1

(b1)

α
+

fa2
(b2)− fa2

(a2)

β

)

=

= 0 + γ(−α/α+ β/β) = 0.

The lemma follows. ⊓⊔

Lemma 22. 1. Let x, y, and z be conservative vertices, with {x, y}, {y, z} ∈ E,
and assume that y ∈ V ′

Γ . Then, {x, z} ∈ E.
2. For n ≥ 2, let (x1, . . . , xn) be a path of conservative vertices in G, with

x2, . . . , xn−1 ∈ V ′
Γ . If n is even, then {x1, xn} ∈ E, otherwise {x1, xn} ∈ E.

3. For n ≥ 3, let (x1, . . . , xn, x1) be an odd cycle of conservative vertices in G,
with x2, . . . , xn ∈ V ′

Γ . Then, there is a loop on x1.

4. If {
−−→
a1b1,

−−→
a2b2} ∈ E, then for each element x 6= a2, b2, either {

−−→
a1b1,

−→a2x} ∈ E

or {
−−→
a1b1,

−→
xb2} ∈ E.

5. If {−→xy,−→yx}, {−→yz,−→zy} ∈ E and {−→xy,−→yz} 6∈ E, then {−→xy,−→zx}, {−→yz,−→zx} ∈ E.
6. If there is a loop on −→xz, but −→xy and −→yz are loop-free, then {−→xy,−→yz} ∈ E.

Proof. Properties (1)–(3) are minor variations of Lemma 11(b) and (e) in [14].
We include the proofs here for completeness.

(1) Let x =
−−→
a1b1, y =

−−→
a2b2, and z =

−−→
a3b3. By Lemma 21, we have h1, h2 ∈

〈Γ, CD〉fn such that α1 = h1(a1, b2) = h1(b1, a2) < h1(a1, a2) = h1(b1, b2) = β1

and α2 = h2(a2, b3) = h2(b2, a3) < h2(a2, a3) = h2(b2, b3) = β2. Let h′(u1, u3) =
minu2∈{a2,b2} h1(u1, u2) + h2(u2, u3), which is in 〈Γ, CD〉fn since y ∈ V ′. Now,
h′(a1, b3) + h′(b1, a3) = minu2,v2∈{a2,b2} h1(a1, u2) + h1(b1, v2) + h2(u2, b3) +
h2(v2, a3) = 2min{α1 + β2, α2 + β1}. We also have h′(a1, a3) + h′(b1, b3) =
minu2,v2∈{a2,b2} h1(a1, u2) + h1(b1, v2) + h2(u2, a3) + h2(v2, b3) = 2(α1 + β1). It
follows that h′(a1, b3) + h′(b1, a3) < h′(a1, a3) + h′(b1, b3), so {x, z} ∈ E.

(2) and (3) These two properties follow by repeated application of (1), keeping
in mind that {x, y} ∈ E iff {x, y} ∈ E.

(4) By definition there exists a function h ∈ 〈Γ, CD〉fn such that h(a1, a2) +
h(b1, b2) > h(a1, b2)+h(b1, a2). If h(a1, a2)+h(b1, x) > h(a1, x)+h(b1, a2), then
we are in the first case. Otherwise, h(a1, a2) + h(b1, x) ≤ h(a1, x) + h(b1, a2), so
h(a1, x) + h(b1, b2) = h(a1, a2) + h(b1, b2) + (h(a1, x) − h(a1, a2)) > h(a1, b2) +
h(b1, a2) + h(a1, x) − h(a1, a2) ≥ h(a1, b2) + (h(a1, a2) + h(b1, x)) − h(a1, a2),
which shows that we are in the second case.

(5) By (4), {−→xy,−→yx} ∈ E implies {−→xy,−→yz} ∈ E or {−→xy,−→zx} ∈ E. In the first
case, we are done, so we assume that the latter holds. Again by (4), {−→yz,−→zy} ∈ E
implies {−→yz,−→zx} ∈ E or {−→yz,−→xy} ∈ E. In the latter case, we are done, hence it
follows that if {−→yz,−→xy} 6∈ E, then we have both {−→xy,−→zx} and {−→yz,−→zx} in E.

(6) By (4), {−→xz,−→xz} ∈ E implies {−→xz,−→xy} ∈ E or {−→xz,−→yz} ∈ E. In the first
case, this in turn implies either {−→xy,−→xy} ∈ E or {−→xy,−→yz} ∈ E. In the second
case, it implies either {−→yz,−→xy} ∈ E or {−→yz,−→yz} ∈ E. Hence, if both −→xy and −→yz
are loop-free, then {−→xy,−→yz} ∈ E. ⊓⊔
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6 Classification for |D| = 4

We are now ready to derive a classification of the computational complexity of
Min CSP over a four-element domain. From here on, we assume that D is the
domain {a, b, c, d}. First, we prove a result which describes the structure of the
unary functions in 〈Γ, C〉fn, when Γ is a core.

Let Σ = {{x, y} ⊆ D | x 6= y}, Σad = Σ \ {{b, c}}, Σ0 = Σ \ {{b, c}, {a, d}},
and let ΣΓ = 〈Γ, CD〉w ∩ Σ. For distinct x, y ∈ D, let uxy(z) = 0 if z ∈ {x, y},
and uxy(z) = 1 otherwise.

Proposition 23. Let Γ be a core over {a, b, c, d} and assume that {b, c} 6∈ ΣΓ .
Then, Σ0 ⊆ ΣΓ and for all unary functions u ∈ 〈Γ, CD〉fn, we have u(a)+u(d) ≤
u(b) + u(c). If Σ0 = ΣΓ , then u(a) + u(d) = u(b) + u(c).

Proof. Let U be the set of unary functions in 〈Γ, CD〉fn. In order to simplify
notation we will denote a unary function u by the vector (u(a), u(b), u(c), u(d)).
To exclude the functions eba, eca, ebd, and ecd from the endomorphisms of Γ ,
Lemma 19 states that U must contain certain unary {0, 1}-valued functions. The
following table lists the possibilities, provided that {b, c} 6∈ ΣΓ , so in particular
ubc = (1, 0, 0, 1) 6∈ U .

eba eca ebd ecd

(1,0,0,0) (1,0,0,0) (0,0,0,1) (0,0,0,1)

(1,0,1,0) (1,1,0,0) (0,0,1,1) (0,1,0,1)

(1,0,1,1) (1,1,0,1) (1,0,1,1) (1,1,0,1)

For each of the four functions exy, it is necessary that at least one of the three
functions in the corresponding column is in U . First assume that (1, 0, 0, 0) ∈ U .
We note that (1, 0, 0, 0) + (0, 0, 0, 1) = ubc, so we conclude that (0, 0, 0, 1) 6∈ U .
Since ecd is not an endomorphism of Γ , we must therefore either have (0, 1, 0, 1)
or (1, 1, 0, 1) in U . In the former case, we can add (1, 0, 0, 0) to obtain (1, 1, 0, 1),
so we know that (1, 1, 0, 1) ∈ U . By a similar argument, considering the function
ebd, we conclude that (1, 0, 1, 1) ∈ U . Since (1, 0, 1, 1) + (1, 1, 0, 1) = 1 + ubc, we
have reached a contradiction. A similar argument shows that (0, 0, 0, 1) 6∈ U .

Assume instead that (1, 0, 0, 0), (0, 0, 0, 1) 6∈ U , (1, 0, 1, 1) ∈ U . As noted
above, we must have (1, 1, 0, 1) 6∈ U , and consequently (1, 1, 0, 0), (0, 1, 0, 1) ∈ U .
But (1, 1, 0, 0)+(0, 1, 0, 1)+2·(1, 0, 1, 1) = 2+ubc so again we have a contradiction.
Thus, the only possibility is that U0 := {ubd, ucd, uab, uac} ⊆ U , so Σ0 ⊆ ΣΓ .

It is not hard to see that one can write every unary function u such that
u(a) + u(d) = u(b) + u(c) as a linear combination of functions from U0 with
non-negative coefficients. We show that if v ∈ 〈Γ, CD〉fn is a unary function in
such that v(a)+ v(d) < v(b)+ v(c), then {a, d} ∈ ΣΓ . The full statement follows
similarly.

Let δ = (v(b) + v(c)− v(a)− v(d))/2 > 0, and let M = maxx∈D v(x). Define
v′(x) = M − v(x) if x = b, c, and v′(x) = M − v(x) + δ otherwise. Then,
v′(a) + v′(d) = v′(b) + v′(c), and M + δuad = v′ + v can be written as a linear
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combination of functions from U0 ∪ {v} with non-negative coefficients. Hence
M + δuad ∈ 〈Γ, CD〉fn, and {a, d} ∈ ΣΓ . ⊓⊔

We need the following two propositions in order to prove Theorem 26. Their
proofs are deferred to the next section.

Proposition 24. Assume that Σ0 ⊆ ΣΓ , and that G′ is bipartite. Then, the set
of binary functions in 〈Γ, CD〉fn is submodular on a chain.

Proposition 25. Assume that Σ0 ⊆ ΣΓ , that G′ is not bipartite, but that G[V ′
Γ ]

is. Then, the set of binary functions in 〈Γ, CD〉fn has a 1-defect chain multimor-
phism.

Theorem 26. Let Γ be a core over D with D = a, b, c, d. If Γ is submodular
on a chain, or if Γ has a 1-defect chain multimorphism, then Min CSP(Γ ) is
tractable. Otherwise, it is NP-hard.

Proof. Assume that G[V ′
Γ ] has a loop on a vertex −→xy. It then follows from

Lemma 21 that there is a function h ∈ 〈Γ, CD〉fn such that h(x, y) = h(y, x) <
h(x, x) = h(y, y), and {x, y} ∈ 〈Γ, CD〉w. By Proposition 5.1 in [4], Min CSP(Γ, CD)
is NP-hard. By Proposition 18, Min CSP(Γ, CD) reduces to Min CSP(Γ ).
Hence, the latter is also NP-hard.

If instead G[V ′
Γ ] is loop-free, then it is bipartite, by Lemma 22(3). We may

assume that Σ0 ⊆ ΣΓ : this is trivial if ΣΓ = Σ. If ΣΓ is strictly contained in Σ,
then up to an automorphism we may assume that {b, c} 6∈ ΣΓ , and the inclusion
follows by Proposition 23. For a k-ary function h ∈ Γ , let Φ(h) be the set of
binary which can be obtained from h by fixing at least k − 2 variables, and let
Γ ′ be the union of Φ(h) over all h ∈ Γ .

Now, if G′ is bipartite, then by Proposition 24, the set of binary functions
in 〈Γ, CD〉fn is submodular on a chain. Since this set contains Γ ′, we may con-
clude, by Lemma 11, that Γ is submodular on this chain as well. It follows that
Min CSP(Γ ) is tractable [9, 21].

Otherwise, G′ is not bipartite, and by Proposition 25, the set of binary func-
tions in 〈Γ, CD〉fn have a 1-defect chain multimorphism. Since this set contains
Γ ′, we may conclude, by Lemma 14 this time, that Γ has a 1-defect chain mul-
timorphism. It now follows from Proposition 10 that Min CSP(Γ ) is tractable.

⊓⊔

7 Proofs of Propositions 24 and 25

Lemma 27. If Σ0 ⊆ ΣΓ , and x ∈ V ′ is not isolated in G′, then {x, x} ∈ E.

Proof. By assumption, there is an edge {x,−→yz} ∈ E. If {y, z} 6= {b, c}, {a, d},
then −→yz ∈ V ′

Γ since Σ0 ⊆ ΣΓ . If instead {x,
−→
bc} ∈ E, then it follows from

Lemma 22(4) that either {x,
−→
ba} ∈ E or {x,−→ac} ∈ E, and

−→
ba,−→ac ∈ V ′

Γ due to
Σ0 ⊆ ΣΓ . In either case, {x, x} ∈ E follows from Lemma 22(1). ⊓⊔
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For an independent set I in G′, let RI denote the binary relation on D defined
by (x, y) ∈ RI iff −→xy ∈ I.

Proof (Proposition 24). Let {I, J} be a 2-colouring of the subgraph of G′ induced
by the non-isolated vertices. We first show that RI is a partial order on D. Let
(x, y), (y, z) ∈ RI . Then, −→xy and −→yz have the same colour in I, and it follows
that {−→xy,−→yz} 6∈ E. Hence, by Lemma 22(5), we have {−→xy,−→zx}, {−→yz,−→zx} ∈ E. By
Lemma 27, {−→zx,−→xz} ∈ E, so −→xz ∈ I and (x, z) ∈ RI . Now, let (D;<) be a linear
extension of RI , and let I ′ ⊇ I be the corresponding subset of V ′. The set I ′ is
independent since I is independent and I ′ \ I is a set of isolated vertices in G′.
Since there are no edges from V ′ to the singleton vertices in G, we can add all
of these to I ′ as well. Thus, by Lemma 20, every binary function in 〈Γ, CD〉fn is
submodular on the chain (D;∧,∨), where ∧ and ∨ are defined with respect to
the total order (D;<). ⊓⊔

In the following, we will let (f, g) denote the vertex in G given by f(b, c) =
f(c, b) = a and g(b, c) = g(c, b) = d.

Lemma 28. Assume that ΣΓ ⊆ Σad and that there is an edge {(f, g), z} ∈ E,

z ∈ V ′. Then, {
−→
ab, z} ∈ E or {−→ac, z} ∈ E, and {

−→
bd, z} ∈ E or {

−→
cd, z} ∈ E.

Proof. Let z = −→xy. By definition, there exists a function h ∈ 〈Γ, CD〉fn such that
min{h(b, x) + h(c, y), h(c, x) + h(b, y)} < h(a, x) + h(d, y). If h(b, x) + h(c, y) <
h(a, x) + h(d, y), then h(a, x) + h(b, y) > (h(b, x) + h(c, y)− h(d, y)) + h(b, y) ≥
h(b, x) + h(a, y) + h(d, y) − h(d, y) since h(b, y) + h(c, y) ≥ h(a, y) + h(d, y) by
Proposition 23. Thus, {

−→
ab,−→xy} ∈ E. If h(c, x) + h(b, y) < h(a, x) + h(d, y), then

we obtain {−→ac,−→xy} ∈ E following a similar argument, and the remaining two
cases can be deduced in the same way.

Lemma 29. If ΣΓ ⊆ Σ0, and there is a loop on
−→
bc or

−→
ad, then there is a loop

on at least one of the vertices
−→
ab, −→ac,

−→
bd,

−→
cd.

Proof. Assume, without loss of generality, that there exists an h ∈ 〈Γ, CD〉fn
such that h(b, b)+h(c, c) > h(b, c)+h(c, b). By Proposition 23, ΣΓ ⊆ Σ0 implies
the relations h(b, b)+h(c, c) = h(a, a)+h(d, d), h(b, b)+h(c, b) = h(a, b)+h(d, b),
h(b, c)+h(c, c) = h(a, c)+h(d, c), h(b, b)+h(b, c) = h(b, a)+h(b, d), and h(c, b)+
h(c, c) = h(c, a) + h(c, d). It follows that (h(a, a) + h(b, b)) + (h(a, a) + h(c, c)) +
(h(b, b) + h(d, d)) + (h(c, c) + h(d, d)) > 2(h(b, b) + h(c, c) + h(b, c) + h(c, b)) =
(h(a, b) + h(b, a)) + (h(a, c) + h(c, a)) + (h(b, d) + h(d, b)) + (h(c, d) + h(d, c)),
which implies that the inequality h(x, x) + h(y, y) > h(x, y)+ h(y, x) holds in at
least one of the cases {x, y} = {a, b}, {a, c}, {b, d}, {c, d}. ⊓⊔

Proof (Proposition 25). We follow a strategy similar to that of Proposition 24.
However, instead of using G′ we now consider the graph G[V ′

ad ∪{(f, g), (g, f)}],
where V ′

ad = V ′ \ {
−→
bc,

−→
cb}. First, we show that G[V ′

ad] is bipartite. If ΣΓ = Σad,
then G[V ′

ad] = G[V ′
Γ ] is bipartite by assumption. Otherwise, ΣΓ = Σ0. Since
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G[V ′
Γ ] = G[V ′

0 ] is loop-free, we know from Lemma 29 that there is no loop on
−→
bc, nor on

−→
ad. Thus, by Lemma 22(3), G[V ′

ad] is bipartite.
Assume for the moment that the following holds:

For y ∈ D \ {b, c}, there is an odd path in G[V ′
ad] from

−→
by to −→yc . (11)

Let {I, J} be a 2-colouring of the subgraph of G[V ′
ad] induced by the non-

isolated vertices. We claim that RI is a partial order on D. Let (x, y), (y, z) ∈ RI

and observe that (11) implies {x, z} 6= {b, c}. As in the proof of Proposition 24,
we can argue that −→xz is connected by even paths to both −→xy and −→yz. Since
{x, z} 6= {b, c}, it follows that (x, z) ∈ I. Now take a transitive extension of
RI which orders all pairs of elements except for b and c, and let I ′ ⊇ I be the
corresponding subset of V ′

ad. We can assume (possibly by swapping I and J)
that

−→
ad ∈ I ′.

Next we show that I ′∪{(f, g)} is independent. This will ensure that f(b, c) =
a < d = g(b, c) holds in the constructed multimorphism. If (f, g) is not connected
to any vertex in V ′

ad, then I ′ ∪ {(f, g)} is trivially independent. Otherwise, by
Lemma 28, (11), and Lemma 27, we can show that from any z ∈ V ′

ad such
that {(f, g), z} ∈ E, there are odd paths in G[V ′

ad] to each vertex in the set
S = {

−→
ab,−→ac,

−→
bd,

−→
cd}. Since G[V ′

ad] is bipartite, it follows that {
−→
ab,

−→
bd} 6∈ E, so

{
−→
ab,

−→
da} ∈ E by Lemma 22(5). Hence, I ′ = I = S ∪ {

−→
ad}, and z 6∈ I ′.

It remains to verify that I ′ ∪ {(f, g)} together with the singleton vertices in
G also form an independent set, i.e. that there is no edge between a singleton
and (f, g). But by condition (8) this is equivalent to saying that each row and
column of every binary function in 〈Γ, CD〉fn is submodular on Lad, which follows
from Proposition 23. By Lemma 20, every binary function in 〈Γ, CD〉fn has the
1-defect chain multimorphism corresponding to I ′ ∪ {(f, g)}.

Finally, we prove property (11). If ΣΓ = Σad, then by Lemma 22(3), and the
fact that G′ contains an odd cycle, we have a loop on

−→
bc. Since

−→
by and −→yc are

loop-free for y ∈ D \ {b, c}, we have {
−→
by,−→yc} ∈ E by Lemma 22(6). Otherwise,

ΣΓ = Σ0. We argued above that G′ does not contain any loop in this case.
Thus, by Lemma 22(3), every odd cycle C in G′ must intersect both {

−→
bc,

−→
cb}

and {
−→
ad,

−→
da}. Now, by repeatedly applying Lemma 22(2) to C, we obtain a

triangle on a subset of {
−→
bc,

−→
cb,

−→
ad,

−→
da}. By Lemma 27, we can conclude that

G′ in fact contains the complete graph on these four vertices. In particular, we
have both {

−→
ad,

−→
bc} ∈ E and {

−→
da,

−→
bc} ∈ E. By Lemma 22(4), we therefore have

either {
−→
ad,

−→
ba} ∈ E or {

−→
ad,−→ac} ∈ E, and furthermore, either {

−→
da,

−→
ba} ∈ E or

{
−→
da,−→ac} ∈ E. Since there is no loop on

−→
ad, we conclude that either the path

(
−→
ba,

−→
ad,

−→
da,−→ac) or the path (

−→
ba,

−→
da,

−→
ad,−→ac) is in G[V ′

ad]. In the same way, we find
an odd path from

−→
bd to

−→
dc. ⊓⊔
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8 Discussion

We have presented a complete complexity classification for Min CSP over a
four-element domain. More importantly, we have compiled a powerful set of
tools which will allow further systematic study of this problem. In particular,
we have shown that it is possible to add (crisp) constants to an arbitrary core,
without changing the complexity of the problem. This result holds in the more
general case of VCSP as well (although this requires a slightly different defini-
tion of endomorphisms), thus answering Question 4 in Živný [24]. We have also
demonstrated that the techniques used by Krokhin and Larose [15] for lattices
can be used effectively in the context of arbitrary algebras as well, and in doing
so, we have given the first example of an instance where submodularity does not
suffice as an origin of tractability for Min CSP. We hope that this insight will
inspire an interest in the search for more tractable cases which are not explained
by submodularity. Finally, we have shown that graph representations such as
the one defined by Kolmogorov and Živný [14] can be used to great effect, even
in non-conservative settings.

The curious readers may ask themselves several questions at this point, and
the following one is particularly important: do 1-defect chain multimorphisms de-
fine genuinely new tractable classes? There is still a possibility that the tractabil-
ity can be explained in terms of submodularity. We answer this question nega-
tively with the following example.

Example 30. Consider the language Γ = {ubd, ucd, uab, uac, h} where h : D2 →
{0, 1} is defined such that h(x, y) = 1 if and only if x = c or y = b. Then, Γ is a
core on {a, b, c, d} but it is not submodular on any lattice. However, Γ has the
1-defect chain multimorphisms (f1, g1) and (f2, g2) from Example 8.

A related question is why bisubmodularity does not appear in the classifi-
cation of Min CSP over domains of size three [11]. The reason is that for any
cost function h : {0, 1, 2}k → {0, 1} which is bisubmodular, the tuple (0, 0, . . . , 0)
minimises h. It follows that any {0, 1} constraint language over three elements
which is bisubmodular is not a core.

There are several ways of extending this work, and one obvious way is to study
VCSP instead of Min CSP. It is known that the fractional polymorphisms of the
constraint language, introduced by Cohen et al. [3], characterise the complexity
of this problem (see also [5]). Multimorphisms are a special case of such frac-
tional polymorphisms. As in the case of Min CSP, it is currently not known if
submodularity over every finite lattice implies tractability for VCSP. Distribu-
tive lattices imply tractability, and certain constructions on lattices preserve
tractability (homomorphic images and Mal’tsev products) [15]. Furthermore,
the five element modular non-distributive lattice (also known as the diamond)
implies tractability for unweighted VCSP [16]. Finally, it is known that submod-
ularity over finite modular lattices implies containment in NP ∩ coNP [16]. It
is thus clear that in order to approach further classification of either Min CSP

or VCSP, it will be necessary to study the complexity of minimising submodular
cost functions over new finite lattices.
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As a last note, we mention that it seems to be possible to adapt Proposition 24
to the classification in [14] of VCSP for conservative finite-valued languages. This
would yield a simpler description of those tractable cases.
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