Abstract
Algorithm portfolios aim to increase the robustness of our ability to solve problems efficiently. While recently proposed algorithm selection methods come ever closer to identifying the most appropriate solver given an input instance, they are bound to make wrong and, at times, costly decisions. Solver scheduling has been proposed to boost the performance of algorithm selection. Scheduling tries to allocate time slots to the given solvers in a portfolio so as to maximize, say, the number of solved instances within a given time limit. We show how to solve the corresponding optimization problem at a low computational cost using column generation, resulting in fast and high quality solutions. We integrate this approach with a recently introduced algorithm selector, which we also extend using other techniques. We propose various static as well as dynamic scheduling strategies, and demonstrate that in comparison to pure algorithm selection, our novel combination of scheduling and solver selection can significantly boost performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Simon, L.: GLUCOSE: a solver that predicts learnt clauses quality. SAT Competition, 7–8 (2009)
Balint, A., Henn, M., Gableske, O.: hybridGM. Solver description. SAT Competition (2009)
Biere, A.: Picosat version 846. Solver description. SAT Competition (2007)
Biere, A.: Pre,icoSATSC 2009. SAT Competition, 41–43 (2009)
Biere, A.: Lingeling. SAT Race (2010)
Bregman, D.R.: The SAT Solver MXC, Version 0.99. SAT Competition, 37–38 (2009)
Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica 29(4), 767–778 (1961)
Dequen, G., Dubois, O.: kcnfs. Solver description. SAT Competition (2007)
Gebser, M., Kaufmann, B., Schaub, T.: Solution Enumeration for Projected Boolean Search Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009)
Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem. Operations Research 9, 849–859 (1961)
Gomes, C.P., Selman, B.: Algorithm Portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)
Hamadi, Y., Jabbour, S., Sais, L.: LySAT: solver description. SAT Competition, 23-24 (2009)
Hamerly, G., Elkan, C.: Learning the K in K-Means. NIPS (2003)
Heule, M., van Marren, H.: march hi: solver description. SAT Competition, 27–28 (2009)
Heule, M., van Marren, H.: march nn, http://www.st.ewi.tudelft.nl/sat/download.php
Heule, M., Zwieten, J., Dufour, M., Maaren, H.: March_eq: implementing additional reasoning into an efficient lookahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)
Huberman, B., Lukose, R., Hogg, T.: An Economics Approach to Hard Computational Problems. Science 265, 51–54 (2003)
Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically Building Local Search SAT Solvers From Components. In: IJCAI (2009)
Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL procedure for satisfiability. In: SAT (2001)
Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A Portfolio Approach to Algorithm Selection. In: IJCAI, pp. 1542–1543 (2003)
Li, C.M., Wei, W.: Combining Adaptive Noise and Promising Decreasing Variables in Local Search for SAT. Solver description. SAT Competition (2009)
Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-Model-Based Algorithm Portfolios for SAT. SAT (to be published, 2011)
Nikolic, M., Maric, F., Janici, P.: Instance Based Selection of Policies for SAT Solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009)
O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Pham, D.N., Gretton, C.: gnovelty+. Solver description. SAT Competition (2007)
Pham, D.N., Gretton, C.: gnovelty+ (v.2). Solver description. SAT Competition (2009)
Rice, J.R.: The algorithm selection problem. Advances in Computers, 65–118 (1976)
SAT Competition, http://www.satcomptition.org
Silverthorn, B., Miikkulainen, R.: Latent Class Models for Algorithm Portfolio Methods. In: AAAI (2010)
Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)
Soos, M.: CryptoMiniSat 2.5.0. Solver description. SAT Race (2010)
Sorensson, N., Een, N.: MiniSAT 2.2.0 (2010), http://minisat.se
Streeter, M., Golovin, D., Smith, S.F.: Combining Multiple Heuristics Online. In: AAAI, pp. 1197–1203 (2007)
Wei, W., Li, C.M.: Switching Between Two Adaptive Noise Mechanisms in Local Search for SAT. Solver description. SAT Competition (2009)
Wei, W., Li, C.M., Zhang, H.: Combining adaptive noise and promising decreasing variables in local search for SAT. Solver description. SAT Competition (2007)
Wei, W., Li, C.M., Zhang, H.: Deterministic and random selection of variables in local search for SAT. Solver description. SAT Competition (2007)
Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. In: AAAI (2010)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla2009: an Automatic Algorithm Portfolio for SAT. Solver description. SAT Competition (2009)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. JAIR 32(1), 565–606 (2008)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M. (2011). Algorithm Selection and Scheduling. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)