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Abstract

We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H
ranges over partially reflexive forests. We obtain a complexity-theoretic dichotomy: QCSP(H)
is either in NL or is NP-hard. The separating condition is related firstly to connectivity, and
thereafter to accessibility from all vertices of H to connected reflexive subgraphs. In the case
of partially reflexive paths, we give a refinement of our dichotomy: QCSP(H) is either in NL
or is Pspace-complete.

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template (structure) B, is a
popular generalisation of the constraint satisfaction problem CSP(B). In the latter, one asks if
a primitive positive sentence (the existential quantification of a conjunction of atoms) ϕ is true
on B, while in the former this sentence may be positive Horn (where universal quantification is
also permitted). Much of the theoretical research into CSPs is in respect of a large complexity
classification project – it is conjectured that CSP(B) is always either in P or NP-complete [11]. This
dichotomy conjecture remains unsettled, although dichotomy is now known on substantial classes
(e.g. structures of size ≤ 3 [16, 6] and smooth digraphs [13, 3]). Various methods, combinatorial
(graph-theoretic), logical and universal-algebraic have been brought to bear on this classification
project, with many remarkable consequences. A conjectured delineation for the dichotomy was
given in the algebraic language in [7].

Complexity classifications for QCSPs appear to be harder than for CSPs. Just as CSP(B) is
always in NP, so QCSP(B) is always in Pspace. However, no overarching polychotomy has been
conjectured for the complexities of QCSP(B), as B ranges over finite structures, but the only
known complexities are P, NP-complete and Pspace-complete (see [4, 14] for some trichotomies).
It seems plausible that these complexities are the only ones that can be so obtained.

In this paper we study the complexity of QCSP(H), whereH is a partially reflexive (undirected)
forest, i.e. a forest with potentially some loops. CSP(H), in these instances, will either be equiva-
lent to 2-colourability and be in L (if H is irreflexive and contains an edge) or will be trivial (if H
contains no edges or some self-loop). Thus, CSP(H) is here always (very) easy. We will discover,
however that QCSP(H) may be either in NL or be NP-hard (and is often Pspace-complete).
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It is well-known that CSP(B) is equivalent to the homomorphism problem Hom(B) – is there a
homomorphism from an input structure A to B? A similar problem, Sur-Hom(B), requires that
this homomorphism be surjective. On Boolean B, each of CSP(B), Sur-Hom(B) and QCSP(B)
display complexity-theoretic dichotomy (the first two between P and NP-complete, the last between
P and Pspace-complete). However, the position of the dichotomy is the same for QCSP and Sur-
Hom, while it is different for CSP. Indeed, the QCSP and Sur-Hom are cousins: a surjective
homomorphism from A to B is equivalent to a sentence Θ of the form ∃v1, . . . , vkθ(v1, . . . , vk) ∧
∀y(y = v1 ∨ . . . ∨ y = vk), for θ a conjunction of atoms, being true on B. This sentence is
certainly not positive Horn (it involves some disjunction), but some similarity is there. Recently,
a complexity classification for Sur-Hom(H), where H is a partially reflexive forest, was given in
[12].1 The separation between those cases that are in P and those cases that are NP-complete is
relatively simple, those that are hard are precisely those in which, in some connected component
(tree), the loops induce a disconnected subgraph. Their work is our principle motivation, but
our dichotomy appears more complicated than theirs. Even in the basic case of partially reflexive
paths, we find examples P whose loops induce a disconnected subgraph and yet QCSP(P) is in
NL. In the world of QCSP, for templates that are partially reflexive forests H, the condition for
tractability may be read as follows. If H is disconnected (not a tree) then QCSP(H) is in NL.
Otherwise, let λH be the longest distance from a vertex in H to a loop in H. If either 1.) there
exists no looped vertex or 2.) there exists a single reflexive connected subgraph T0 ⊆ H, such
that there is a λH-walk from any vertex of H to T0, then QCSP(H) is in NL (we term such an H
quasi-loop-connected). In all other cases, QCSP(H) is NP-hard. In the case of partially reflexive
paths, we may go further and state that all other cases are Pspace-complete.

In the world of partially reflexive trees, we derive our NL membership results through the
algebraic device of polymorphisms, together with a logico-combinatorial characterisation of tem-
plate equivalence given in [9]. In the first instance, we consider trees in which the loops induce a
connected subgraph: so-called loop-connected trees – including irreflexive trees. Such trees T are
shown to possess certain (surjective) polymorphisms, that are known to collapse the complexity of
QCSP(T ) to a polynomially-sized ensemble of instances of CSP(T c) (the superscript suggesting
an expansions by some constants) [8]. Although CSP(T c) may no longer trivial, T c still admits a
majority polymorphism, so it follows that CSP(T c) is in NL [10].

We prove that every loop-connected tree T admits a certain majority polymorphism, and
deduce therefore that QCSP(T ) is in NL. However, we also prove that loop-connected trees are
the only trees that admit majority polymorphisms, and so we can take this method no further. In
order to derive the remaining tractability results, we use the characterisation from [9] for equivalent
templates – the first time this method has been used in complexity classification. If there exist
natural numbers t and s such that there are surjective homomorphisms from T t to S and from Ss
to T (the superscript here indicates direct power), then it follows that QCSP(T ) = QCSP(S), i.e.
T and S agree on all positive Horn sentences. Of course it follows immediately that QCSP(T )
and QCSP(S) are of the same complexity. It turns out that for every quasi-loop-connected tree T ,
there is a loop-connected tree S such that QCSP(T ) = QCSP(S), and our tractability classification
follows (indeed, one may even insist that the loops of S are always contiguous with some leaves).

For our NP-hardness proofs we use a direct reduction from not-all-equal 3-satisfiability (NAE3SAT),
borrowing heavily from [15]. (In the paper [12] the NP-hardness results follow by reduction from
the problem matching cut, which is proven NP-complete in [15] by reduction from NAE3SAT.)

1Their paper is in fact about partially reflexive trees, but they state in the conclusion how their result extends
to partially reflexive forests.
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Our Pspace-hardness proofs, for partially reflexive paths only, use a direct reduction from quan-
tified not-all-equal 3-satisfiability (QNAE3SAT). We require several different flavours of the same
reduction in order to cover each of the outstanding cases. We conjecture that all NP-hardness
cases for partially reflexive trees (forests) are in fact Pspace-complete.

The paper is organised as follows. After the preliminaries and definitions, we give the cases
that are in NL in Section 3, and the cases that are NP-hard and Pspace-complete in Section 4.
For the cases that are in NL, we first give our result for loop-connected trees. We then expand
to the case of quasi-loop-connected paths (for pedagogy and as an important special subclass)
before going on to all quasi-loop-connected trees. For the cases that are hard, we begin with the
Pspace-completeness results for paths and then give the NP-hardness for the outstanding trees.
Finally we conclude with open problems. We give here our main results.

Theorem 1 (Pspace Dichotomy). Suppose P is a partially reflexive path. Then, either P is
quasi-loop-connected, and QCSP(P) is in NL, or QCSP(P) is Pspace-complete.

Proof. This follows immediately from Theorems 3 (tractability) and 4 (Pspace-completeness).

Theorem 2 (NP Dichotomy). Suppose H is a partially reflexive forest. Then, either H is discon-
nected or quasi-loop-connected, and QCSP(H) is in NL, or QCSP(H) is NP-hard.

Proof. For tractability, if H is a tree then we appeal to Corollary 1. If H is a forest that is not
a tree, then it follows that H is disconnected, and that that QCSP(H) is equivalent to QCSP(H)
with inputs restricted to the conjunction of sentences of the form “∀x∃yϕ(x, y)”, where ϕ is a
conjunction of positive atoms (see [14]). The evaluation of such sentences on any partially reflexive
forest is readily seen to be in NL.

For NP-hardness, we appeal to Theorem 5.

2 Preliminaries and definitions

Let [n] := {1, . . . , n}. A graph G has vertex set G, of cardinality |G|, and edge set E(G). Henceforth
we consider partially reflexive trees, i.e. trees potentially with some loops (we will now drop the
preface partially reflexive). For a sequence α ∈ {0, 1}∗, of length |α|, let Pα be the undirected path
on |α| vertices such that the ith vertex has a loop iff the ith entry of α is 1 (we may say that the
path P is of the form α). We will usually envisage the domain of a path with n vertices to be [n],
where the vertices appear in the natural order. The centre of a path is either the middle vertex, if
there is an odd number of vertices, or between the two middle vertices, otherwise. Therefore the
position of the centre of a path on m vertices is at m+1

2
. In a path on an even number of vertices,

we may refer to the pair of vertices in the middle as centre vertices. Call a path P loop-connected
if the loops induce a connected subgraph of P . Call a path 0-eccentric if it is of the form α1b0a

for b ≥ 0 and |α| ≤ a. Call a path weakly balanced if, proceeding from the centre to each end, one
encounters at some point a non-loop followed by a loop (if the centre is loopless then this may
count as a non-loop for both directions). Call a weakly-balanced path P 0-centred if the centre
vertex is a non-loop (and |P | is odd) or one of the centre vertices is a non-loop (and |P | is even).
Otherwise, a weakly-balanced path P is 1-centred.

In a rooted tree, the height of the tree is the maximal distance from any vertex to the root. For
a tree T and vertex v ∈ T , let λT (v) be the shortest distance in T from v to a looped vertex (if T
is irreflexive, then λT (v) is always infinite). Let λT be the maximum of {λT (v) : v ∈ T}. A tree
is loop-connected if the self-loops induce a connected subtree. A tree T is quasi-loop-connected
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if either 1.) it is irreflexive, or 2.) there exists a connected reflexive subtree T0 (chosen to be
maximal under inclusion) such that there is a walk of length λT from every vertex of T to T0.
The quasi-loop-connected paths are precisely those that are 0-eccentric.

The problems CSP(T ) and QCSP(T ) each take as input a sentence ϕ, and ask whether this
sentence is true on T . For the former, the sentence involves the existential quantification of a
conjunction of atoms – primitive positive logic. For the latter, the sentence involves the arbitrary
quantification of a conjuction of atoms – positive Horn logic.

The direct product G × H of two graphs G and H has vertex set {(x, y) : x ∈ G, y ∈ H} and
edge set {((x, u), (y, v)) : x, y ∈ G, u, v ∈ H, (x, y) ∈ E(G), (u, v) ∈ E(H)}. Direct products are
(up to isomorphism) associative and commutative. The kth power Gk of a graph G is G × . . .× G
(k times). A homomorphism from a graph G to a graph H is a function h : G → H such that, if
(x, y) ∈ E(G), then (h(x), h(y)) ∈ E(G) (we sometimes use−→→ to indicate existence of surjective
homomorphism). A k-ary polymorphism of a graph is a homomorphism from Gk to G. A ternary
function f : G3 → G is designated a majority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = x,
for all x, y ∈ G.

In a matrix, we refer to the leading diagonal, running from the top left to bottom right corner,
and the rising diagonal running from the bottom left to top right corner.

The computational reductions we use will always be comprised by local substitutions that can
easily be seen to be possible in logspace – we will not mention this again. Likewise, we recall
that QCSP(T ) is always in Pspace, thus Pspace-completeness proofs will only deal with Pspace-
hardness.

3 Tractable trees

We now explore the tree templates T such that QCSP(T ) is in NL. We derive our tractability
results though majority polymorphisms and equivalence of template.

3.1 Loop-connected trees and majority polymorphisms

3.1.1 Majority operations on (antireflexive) trees

It is known that all (irreflexive) trees admit a majority polymorphism [1]; however, not just any
operation will suffice for our purposes, therefore we define a majority polymorphism of a certain
kind on a rooted tree T whose root could also be a leaf (i.e. is of degree one). In a rooted tree
let the root be labelled 0 and let the parity propagate outwards from the root along the branches.
For x, y ∈ T define the meet(x, y) to be the highest (first) point at which the paths from the root
to x and the root to y meet. If x and y are on the same branch, and the closer to the root is
x, then meet(x, y) is x. In the following definition, we sometimes write, e.g., d [−1], to indicate
that the function takes either value d or d − 1: this is dependent on the dominant parity of the
arguments which should be matched by the function. Define the following ternary function f on
T .

f0(x, y, z) :=


d [−1] x, y, z all the same parity; d is highest of

meet(x, y), meet(y, z) and meet(x, z) A
meet(u, v) [−1] two of x, y, z (u and v) same parity; other different B

Lemma 1. Let T be a rooted (irreflexive) tree whose root has degree one. Then f0 is a majority
polymorphism of T .
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Proof. It is easy to see that f is a majority operation and that it is well-defined. For the latter
we use both the fact that the root has degree one and that meet(x, y), meet(y, z) and meet(x, z)
are never incomparable. Now we prove that f preserves E(T ). Consider f(a, b, c) and f(a′, b′, c′)
such that (a, a′), (b, b′) and (c, c′) ∈ E(T ).

Case I. a, b and c are of the same parity. It follows that a′, b′ and c′ are the same parity, and
Rule A applies.

Case II. Two are of one parity, one is different – w.l.o.g. a and b share same parity. Thus, a′

and b′ are of the same parity with c′ different, and Rule B applies.

3.1.2 Majority operations on reflexive trees

It is known that reflexive trees admit a majority polymorphism [2], but it will be a simple matter
for us to provide our own. If x, y, z are vertices of a (not necessarily reflexive) tree T then we
define their median to be the unique point where the paths from x to y, y to z and x to z meet.
It follows that median is a majority operation. If x, y and z are all on a single branch (path),
then we have given the standard definition of median. On a tree, the median function need not
be conservative (i.e. we do not in general have median(x, y, z) ∈ {x, y, z}). The following is easy
to verify.

Lemma 2. Let T be a reflexive tree. Then the median function is a majority polymorphism of T .

3.1.3 Amalgamating these operations

Let T be constructed by attaching rooted (irreflexive) trees – called tree-components – whose
roots have degree one, to the branches of some reflexive tree – the centre – such that the resulting
object is a partially reflexive tree (loop-connected, of course). The roots maintain their labels 0
despite now having a loop there. These special looped vertices are considered both part of their
tree-component(s) and part of the centre. For the sake of well-definition, we preferentially see a
vertex 0 as being in some tree-component. Thus a looped vertex 0 and the vertex 1 above it, in its
tree-component, constitute two vertices in the same tree-component. It is possible that a looped
vertex 0 is simultaneously the 0 in multiple tree-components. This will mean we have to verify
well-definition. Define the following ternary operation on T .

f1(x, y, z) :=



f0(x, y, z) x, y, z in same tree-component A
meet(u, v) [−1] two of x, y, z (u and v) in the same tree-component;

other elsewhere; and u, v same parity B
0 from {u, v}’s comp. two of x, y, z (u and v) in the same tree-component;

other elsewhere; and u, v different parity C
median(x, y, z) otherwise D

Lemma 3. Let T be a loop-connected tree. Then f1 is a majority polymorphism of T .

Proof. Well-definition can be seen by noting two things. Firstly, Rule B always returns an element
in u and v’s tree-component. Secondly, if a 0 is involved that is a 0 in more than one (i.e. two)
relevant tree-components, then Rules B and C return the same value.

A loop-connected tree is either irreflexive, in which case we refer to Lemma 1, or is exactly
of the form given above (constructed by adding irreflexive trees to a reflexive tree). In the latter
case, let us consider f1(a, b, c) and f1(a′, b′, c′) such that (a, a′), (b, b′) and (c, c′) ∈ E(T ).
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If a, b, c are all in the same tree-component, then either a′, b′, c′ are all in the same tree-
component (and we use Rule A), or one of Rules B or C applies. We argue symmetrically if
a′, b′, c′ are all in the same tree-component.

Otherwise, neither a, b, c nor a′, b′, c′ are triples in the same tree-component. Suppose that two
elements from a, b, c (w.l.o.g., a and b) are from the same tree-component, and c is from a different
tree-component. If f1(a, b, c) is not the 0 in a and b’s tree-component, then a′ and b′ are in the
same tree-component as a and b, with the same respective parities, and either of Rules B or C
applies.

The remaining cases all involve f1(a, b, c) mapping to the reflexive centre, and Rules B, C or
D apply.

Proposition 1. If T is a loop-connected tree, then QCSP(T ) is in NL.

Proof. Since T admits a majority polymorphism, from Lemma 3, it follows from [8] that QCSP(T )
reduces to the verification of a polynomial number of instances of CSP(T c), each of which is in
NL by [10]. The result follows.

In fact, for our later results, we only require the majority polymorphism on trees all of whose
loops are in a connected component involving leaves. However, we give the fuller result because it
is not much more difficult and because we can show these are the only trees admitting a majority
polymorphism.

Proposition 2. Let T be a tree that is not loop-connected, then T does not admit a majority
polymorphism.

Proof. Let T be such a tree; it follows that it contains an induced path P of the form α10c1β.
Suppose P were such a path on n vertices, with |α| = a, and f is a majority operation on P ⊆ T
with P := [n] (of course the range of f might include elements in T \ P ). Suppose that f would
be a polymorphism of P ⊆ T (we will derive a contradiction). Let p := a+ 1 < q := a+ b+ 1 be
the positions of the loops at the ends of an irreflexive path. Since f(p, p, q) = p, we deduce that
f(p, p+1, q) = p, p+1 or any other vertex adjacent to p in T . The same applies to f(p+1, p, q), and
it follows that both of f(p, p+1, q) and f(p+1, p, q) can not be p+1. W.l.o.g. let f(p, p+1, q) = r,
where the distance from r to q in T is greater than or equal to p − q. Deduce in turn that the
distance from f(p, p + 1, q) ≤ p, . . . , f(p, q − 1, q ≤ q − 2) to q is greater than or equal to p − q,
. . . , 2. But f(p, q, q) = q, and we have the desired contradiction.

3.2 Paths of the form α0a where |α| ≤ a+ 1

We will now explore the tractability of paths of the form α0a, where |α| ≤ a + 1. In the proof of
the following lemma we deviate from the normalised domain of [n] for a path on n vertices, for
pedagogical reasons that will become clear.

Lemma 4. There is a surjective homomorphism from P10m
2 to P0m10m.

Proof. Let [a, b] := {a, . . . , b}. Let E(P10m) := {(i, j) : i, j ∈ [0,m], j = i + 1} ∪ {(0, 0)}. Let
P0m10m be the undirected 2m-path (on 2m+ 1 vertices) such that the middle vertex has a self-loop
but none of the others do. Formally, E(P0m10m) = {(i, j) : i, j ∈ [−m,m], j = i + 1} ∪ {(0, 0)}.
The numbering of the vertices is important in the following proof. We will envisage P10m

2 as a
square (m+ 1)× (m+ 1) matrix whose top left corner is the vertex (0, 0) which has the self-loop.
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The entry in the matrix tells one where in P0m10m the corresponding vertex of P10m
2 is to map. It

will then be a straightforward matter to verify that this is a surjective homomorphism. By way of
example, we give the matrix for m+ 1 := 7 in Figure 2 (for all smaller m one may simply restrict
this matrix by removing rows and columns from the bottom right). 0 is sometimes written as −0
for (obvious) aesthetic reasons – we will later refer to the two parts plus and minus of the matrix.

0 2

3

4

4

5

6

6

0

1

2

1 3 5

Figure 1: P106
2 and its . . .

−0 0 −0 0 −0 0 −0

1 −1 1 −1 1 −1 1

−0 2 −2 2 −2 2 −2

1 −1 3 −3 3 −3 3

−0 2 −2 4 −4 4 −4

1 −1 3 −3 5 −5 5

−0 2 −2 4 −4 6 −6

Figure 2: . . . homomorphism to P06106

We refer to the far left-hand column as 0. Note that the leading diagonal enumerates−0, ...,−m.
Beneath the leading diagonal, the matrix is periodic in each column (with period two). In general,
the jth column of this matrix will read, from top to bottom:

(−1)j−1.0, (−1)j.1, (−1)j+1.2, . . . , (−1)j+j−2.(j − 1), −j, j + 1, −j, j + 1, etc.

Plainly this map is surjective, we must verify that it is a homomorphism. Adjacent entries in the
top row and in the left column must be adjacent – and this is clearly the case (remember there is
a self-loop on 0). Apart from this, we must have adjacency in the diagonals, thus any point in the
matrix must be adjacent (at distance one) from each of its neighbours in the compass directions
NW, NE, SE, SW. We consider seven cases and in each of these give the change of value in the
matrix for each of the four directions. In the following, LD abbreviates leading diagonal. We begin
by considering SW and NW of the leading diagonal (both plusses and minusses), respectively.

+1 bb

""

−1<<

}}
+1 −1

−1 bb

!!

+1<<

||
−1 +1

+1 bb

!!

+1<<

}}
−1 −1

−1 aa

""

−1==

||
+1 +1

SW of LD; −s SW of LD; +s NW of LD; −s NW of LD; +s

We now conclude with the three boundary diagonals (the leading diagonal iteself as well as the
two diagonals which are adjacent to it).
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−1 bb

!!

−1<<

||
−1 +1

+1 bb

!!

+1<<

||
+1 −1

−1 aa

""

−1==

||
+1 +1

Below LD; +s On LD; −s Above LD; +s

Proposition 3. If P is of the form α0a where |α| ≤ a+ 1, then QCSP(P) is in P.

Proof. Let P be of the form α0a where |α| ≤ a+ 1. If P is irreflexive then the result follows from
[14]. Otherwise, P contains a loop, the right-most of which is m vertices in from the right-hand
end (on or left of centre). We claim P −→→ P10m and P10m

2−→→ P . It then follows from [9] that
QCSP(P) = QCSP(P10m), whereupon membership in NL follows from Proposition 1.

The surjective homomorphism from P to P10m is trivial: map all vertices to the left of the
right-most loop of P to the loop of P10m , and let the remainder of the map follows the natural
isomorphism. The surjective homomorphism from P10m

2−→→ P follows from the obvious surjective
homomorphism from P0m10m to P , via Lemma 4.

3.3 Paths of the form α1b0a where b ≥ 1 and |α| = a

Lemma 5. For b ≥ 1, there is a surjective homomorphism from P1a1b0a
2 to P0a1b0a.

Proof. We begin by giving the proof for the case b = 1. Let P1a10a be the undirected 2a-path (on
2a+1 vertices) such that the middle vertex and all vertices to the left have a self-loop but none of the
other vertices do. Formally, E(P1a10a) = {(i, j) : i, j ∈ [−a, a], j = i + 1} ∪ {(−a,−a), . . . , (0, 0)}.
We see P0a1b0a as a subgraph of P1a1b0a in the obvious fashion. The numbering of the vertices is
important in the following proof. We will envisage P1a10a

2 as a square (2a+ 1)× (2a+ 1) matrix
whose top left corner is the vertex (−a,−a). The entry in the matrix tells one where in P0a10a

the corresponding vertex of P1a10a
2 is to map. It will then be a straightforward matter to verify

that this is a surjective homomorphism. By way of example, we give the matrix for a := 4 in
Figure 4. We consider the matrix to have a central cross of 0s – indexed by column 0 and row 0
– whose removal leaves four segments. The NW and NE segments are all 0s and the SW and SE
segments are isomorphic under a reflection that maps −x to x. We henceforth discuss only the SE
submatrix – columns ≥ 1 and rows ≥ 1. Beneath the leading diagonal, the submatrix is periodic
in each column (with period two). In general, the jth column of the submatrix will read, from top
to bottom: 1 . . . , j, j − 1, j, j − 1, etc..

This map is certainly surjective, but we must now verify that it is a homomorphism. In the
central cross and NW and NE this is trivial. Where the central cross borders the SW and SE
segments this is again easy to see. The argument for within the SW and SE segments is the same.
Note that we must have more adjacencies in the SW than the SE – so we will undertake our
argument there. In the SW, we require adjacencies along both diagonals and along the vertical.
For the vertical, the necessary relationship, decreasing by one until the rising diagonal, and then
oscillating with period two, is immediate. For the diagonals running SW-NE, the values are
incrementing by one and the result is clear. For the diagonals running NW-SE, the relationship
is slightly more sophisticated, with the values dropping from −1 until their minimum, on or
immdediately before the rising diagonal, and then climbing again to either 0 or −1. In any case
the necessary property holds and the result follows.
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4

3

2

1

0

−1

−2

−4

−3

−4 0 31 42−2 −1−3

Figure 3: P14104
2 and its . . .

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 −1 −1 −1 0 1 1 1 1

−2 −2 −2 0 0 0 2 2 2

−3 −3 −1 −1 0 1 1 3 3

−4 −2 −2 0 0 0 2 2 4

Figure 4: . . . homomorphism to P04104

In the case that b > 1, we will keep the vertices −a, . . . ,−1 and 1, . . . , a as the vertices to the
left and to the right of the middle loops 01, . . . , 0b, respectively. Formally, we envisage

E(P1a1b0a) := {(i, j) : i, j ∈ [−a,−1], [1, a], j = i+ 1} ∪ {(0i, 0j) : i, j ∈ [1, b], }∪
{(−1, 01), (01,−1), (0b, 1), (1, 0b} ∪ {({(−a,−a), . . . , (−1,−1), (01, 01), . . . , (0b, 0b)}.

Now the central cross of the matrix giving the homomorphism from P1a1b0a
2 consists of b rows and

b columns indexed respectively by 01 to 0b. We may assume that the entries of the i such column
0i are uniformly 0i, for i ∈ [b]. This accounts for the vertical in the cross. We may now write 01

into the entire left-side of the cross and the NW segment, and 0b into the right-hand side of the
cross and the NE segment. The SW and SE segments are specified as before (01 should be used as
0 in the SW segment and 0b should be used as 0 in the SE segment. By way of example, we give
the matrix for a := 5 and b := 3 in Figure 5. The proof of the correctness of this homomorphism
is essentially as before (in the proof of Lemma 4).

Proposition 4. If P is of the form α1b0a for b ≥ 1 and |α| = a, then QCSP(P) is in P.

Proof. Let P be of the form α1b0a where |α| = a and b ≥ 1. We claim P −→→ P1a1b0a and
P1a1b0a

2−→→ P . It then follows from [9] that QCSP(P) = QCSP(P1a1b0a), whereupon membership
in NL follows from Proposition 1.

The surjective homomorphism from P to P1a1b0a is the identity. The surjective homomorphism
from P1a1b0a

2 to P follows from the surjective homomorphism from P0a1b0a to P (the identity), via
Lemma 5.

Theorem 3. If P is quasi-loop-connected (0-eccentric), then QCSP(P) is in P

9



01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

01 01 01 01 01 01 02 03 03 03 03 03 03

−1 −1 −1 −1 −1 01 02 03 1 1 1 1 1

−2 −2 −2 −2 01 01 02 03 03 2 2 2 2

−3 −3 −3 −1 −1 01 02 03 1 1 3 3 3

−4 −4 −2 −2 01 01 02 03 03 2 2 4 4

−5 −3 −3 −1 −1 01 02 03 1 1 3 3 5

Figure 5: The homomorphism of P151305
2 to P051305
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Proof. If P is quasi-loop-connected (0-eccentric), then either P is of the form α0a, for |α| ≤ a+ 1,
or α1b0a, for |α| = a and b ≥ 1 (or both!). The result follows from Propositions 3 and 4.

We remark that one could prove the tractability results for 0-eccentric paths using only the
method of Lemma 5. This is because one can see that there is a surjective homomorphism from
P1a10b

2 to P0a10b , when a < b (read this from Figure 4 by removing b− a rows and columns from
the top left). However, we will shortly see a generalised version of Lemma 4, and so it is that our
exertions were not in vain.

3.4 The quasi-loop-connected case

Suppose that T is a quasi-loop-connnected tree, that is neither reflexive nor irreflexive, with
associated T0 and λT , as defined in the preliminaries. Let vλ ∈ T be such that there is no (λT −1)-
walk to a looped vertex but there is a λT -walk to the looped vertex l of the maximal (under
inclusion) connected reflexive subtree T0 (such a vλ exists). Let T1 be the maximal subtree of T
rooted at l that contains vλ.

Lemma 6. If T and vλ are as in the previous paragraph, then vλ is a leaf.

Proof. If not, then vλ has a neighbour w on the path in the direction from l towards and beyond
v. But the distance from this vertex to the connected component T0 containing l is λT + 1, which
contradicts maximality of λT .

Note that if T were an arbitrary tree, i.e. not quasi-loop-connected, then there is no need for vλ,
at maximal distance from a loop, to be a leaf. E.g., let P101 be the path on three vertices, the two
ends of which are looped. λP101 = 1 and vλ would be the centre vertex.

So, as before, let T be a quasi-loop-connnected tree that is neither reflexive nor irreflexive, and
let some vλ ∈ T be given (vλ, of course, need not be unique). There is an irreflexive path P ⊆ T1

of length λT from the leaf vλ to l ∈ T0. There may be other paths joining this path, of course. Let
T ′ be T with these other paths pruned off (see Figure 8). We need to take a short diversion in
which we consider graphs with a similar structure to T ′.

Lemma 7. Suppose H consists of a graph G, with a looped vertex l, onto which an irreflexive path
P of length λ is attached. Let H′ be constructed as H but with the addition of two (disjoint) paths
P onto the looped vertex l. Then there is a surjective homomorphism from H2 to H′.

Proof. We proceed essentially by example, see Figures 6 and 7, where G = {0, 1, 2, 3}, l = 3 and
P = {3, 4, 5, 6}. {4, 5′, 6′, 7′} constitutes the copy of P . The generalisation to arbitrary graphs is
clear – we proceed as in the proof of Lemma 4 (for longer P , in the SE part of the matrix) and
by the trivial projection (for larger G, in the N of the matrix). For the SW of ther matrix, we
continue to map uniformly to l (note that we are requiring the loop on the vertex l).

Lemma 8. There is a surjective homomorphism from T to T ′. There exists p ∈ N such that there
is a surjective homomorphism from (T ′)p to T .

Proof. The surjective homomorphism from T to T ′ takes the paths constituted by T1 \P and folds
them back towards l. These paths may have loops on them, but never at distance < λT from vλ,
which explains why this will be a homomorphism.

The surjective homomorphism from (T ′)p to T comes from the multiplication of the paths P
– by iteration of Lemma 7 – in powers of T ′ (note that nothing may be further than λT from l in

11



0 2

3

4

4

5

6

6

0

1

2

1 3 5

Figure 6: H2 (and H′ below) and its . . .

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

3 3 3 4 4′ 4 4′

3 3 3 3 5 5′ 5

3 3 3 4 4′ 6 6′

Figure 7: . . . homomorphism to H′

.... . . l

T0

P
vλ

Sk

S1

Figure 8: Anatomy of T ′

T1, without violating maximality of λT or uniqueness of T0). To cover T1 in T we require no more
than |T1| copies of the path P . According to the previous lemma, we may take p := |T1| − 1 (in
fact it is easy to see that dlog |T1|e suffices).

Now, it may be possible that in T ′ there are subtrees S1, . . . , Sk rooted in T0 whose first vertex,
other than their root, is a non-loop (because we chose T0 to be maximal under inclusion). The
height of these trees is ≤ λT . Let T ′′ be T ′ with these subtrees S1, . . . ,Sk being reflexively closed.
In the following lemma we use implicitly the fact that the presence of a surjective homomorphism h
from A2 to B, generates also a surjective homomorphism from A4 to B2 given by (a1, a2, a3, a4) 7→
(h(a1, a2), h(a3, a4)).

Lemma 9. There is a surjective homomorphism from T ′ to T ′′. There is a p such that there is a
surjective homomorphism from (T ′′)p to T ′.

Proof. The identity is a surjective homomorphism from T ′ to T ′′.
The surjective homomorphism from from (T ′′)p to T ′ may be constructed in a variety of stages

of repeated squaring, dealing with Si in the ith stage. There are two cases to consider. Either 1.)
there is a λT walk from l to all vertices of Si or 2.) there is not.

12



10 3 6 7 9 10 11542 8

10 3 6 7 9 10 11542 8

Y

X

3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
2 2 2 3 4 5 6 7 7 9 10 11
0 1 3 3 4 5 6 6 8 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11
3 3 3 3 4 5 6 6 6 9 10 11

Figure 9: Example surjective homomorphism from X 2 to Y .

In Case 1, we repeatedly square, reproducing the path P |Si| times and covering Si in this
manner.

Case 2 is illustrated in Figure 9, and applies the method from the proof of Lemma 5. In this
case, the centre of a path from vλ, via l, to the top of the tree Si, lies in T0. in Figure 9, X
should be read as T0 := {2, 3, 4, 5, 6}, S := {0, 1, 2, 3}, P := {6, 7, 8} rooted at l (l := 6, vλ := 8)
and Z := {4, 9, 10, 11}. The purpose of Z in the picture is to demonstrate that the technique for
“removing” loops from the reflexive closure of S can be applied across T0 (from the non-loops,
here in the form of {7, 8}) regardless of any subtrees that may come off from T0. In X we have
the reflexive closure of S, for Y we show how to surjectively cover S, even if S had no loops in
T ′ (other than its root 3). The centre part of the matrix considers how the square of the path
substructure of X induced by {1, . . . , 8} maps to the path substructure of Y induced by {1, . . . , 8}
– this is essentially what we have seen in Lemma 5. The left-centre part of the matrix again uses
Lemma 5, but now we are interested in the path substructures induced by {0, 2, . . . , 8}. The whole
right-hand (W) part of the matrix is a projection on to Z, and the top-centre, top-left, bottom-
centre and bottom-left follow the pattern of the top of the centre part of the matrix (again, as
dictated in Lemma 5).

It follows, by repeated squaring and surjective homomorphism according to the stages given,
that one may take p := 2|S1|+...+|Sk| (this p is far from optimal).

Corollary 1. Let T be quasi-loop-connected, then QCSP(T ) is in NL.

Proof. If T is actually loop-connected, then the result is Proposition 1. Otherwise, QCSP(T )=
QCSP(T ′)= QCSP(T ′′), and tractability of the last follows from Proposition 1.
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Figure 10: Variable and clause gadgets in reduction to QCSP(P101).

4 Hard cases

4.1 Pspace-completeness results for paths that are not 0-eccentric

4.1.1 P101 and weakly balanced 0-centred paths

In the following proof we introduce the notions of pattern and ∀-selector that will recur in future
proofs.

Proposition 5. QCSP(P101) is Pspace-complete.

Proof. For hardness, we reduce from QNAE3SAT, where we will ask for the extra condition that no
clause has three universal variables (of course, any such instance would be trivially false). From an
instance Φ of QNAESAT we will build an instance Ψ of QCSP(P101) such that Φ is in QNAE3SAT
iff Ψ in QCSP(P101). We will consider the quantifier-free part of Ψ, itself a conjunction of atoms, as
a graph, and use the language of homomorphisms. The constraint satisfaction problem, CSP(P101),
seen in this guise, is nothing other than the question of homomorphism of this graph to P101. The
idea of considering QCSP(P101) as a special type of homomorphism problem is used implicitly in
[5]2 and explicitly in [14].

We begin by describing a graph GΦ, whose vertices will give rise to the variables of Ψ, and
whose edges will give rise to the facts listed in the quantifer-free part of Ψ. Most of these variables
will be existentially quantified, but a small handful will be universally quantified. GΦ consists
of two reflexive paths, labelled > and ⊥ which contain inbetween them gadgets for the clauses
and variables of Φ. We begin by assuming that the paths > and ⊥ are evaluated, under any
homomorphism we care to consider, to vertices 1 and 3 in P101, respectively (the two ends of P101);
later on we will show how we can effectively enforce this. Of course, once one vertex of one of the
paths is evaluated to, say, 1, then that whole path must also be so evaluated – as the only looped
neighbour of 1 in P101 is 1. The gadgets are drawn in Figure 10. The pattern is the path P101,
that forms the edges of the diamonds in the clause gadgets as well as the tops and bottoms of
the variable gadgets. The diamonds are braced by two horizontal edges, one joining the centres of
the top patterns and the other joining the centres of the bottom patterns. We will return to the
question of the absence of vertical bracing at the end of the proof. The ∀-selector is the path P10,
which travels between the universal variable node v2 and the labelled vertex ∀.

For each existential variable v1 in Φ we add the gadget on the far left, and for each universal
variable v2 we add the gadget immediately to its right. There is a single vertex in that gadget

2The journal version of this paper was published much later as [4].
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that will eventually give rise to a variable in Ψ that is universally quantified, and it is labelled
∀. For each clause of Φ we introduce a copy of the clause gadget drawn on the right. We then
introduce an edge between a variable v and literal li (i ∈ {1, 2, 3}) if v = li (note that all literals
in QNAE3SAT are positive). We reorder the literals in each clause, if necessary, to ensure that
literal l2 of any clasue is never a variable in Φ that is universally quantified. It is not hard to verify
that homomorphisms from GΦ to P101 (such that the paths > and ⊥ are evaluated to 1 and 3,
respectively) correspond exactly to satisfying not-all-equal assignments of Φ. The looped vertices
must map to either 1 or 3 –> or⊥ – and the clause gadgets forbid exactly the all-equal assignments.
Now we will consider the graph GΦ realised as a formula Ψ′′, in which we will existentially quantify
all of the variables of Ψ′′ except: one variable each, v> and v⊥, corresponding respectively to some
vertex from the paths > and ⊥; all variables corresponding to the centre vertex of an existential
variable gadget; all variables corresponding to the centre vertex of a universal variable gadget, and
all variables corresponding to the extra vertex labelled ∀ of a universal variable gadget. We now
build Ψ′ by quantifying, adding outermost and in the order of the quantifiers of Φ:

• existentially, the variable corresponding to the centre vertex of an existential variable gadget,

• universally, the variable corresponding to the extra vertex labelled ∀ of a universal variable
gadget, and then existentially, the variable corresponding to the centre vertex of a universal
variable gadget.

The reason we do not directly universally quantify the vertex associated with a universal variable
is because we want it to be forced to range over only the looped vertices 1 and 3 (which it does
as its unlooped neighbour ∀ is forced to range over all {1, 2, 3}). Ψ′(v>, v⊥) is therefore a positive
Horn formula with two free variables, v> and v⊥, such that, Φ is QNAE3SAT iff P101 |= Ψ′(1, 3).
Finally, we construct Ψ from Ψ′ with the help of two ∀-selectors, adding new variables v′> and v′⊥,
and setting

Ψ := ∀v′>, v′⊥∃v>, v⊥ E(v′>, v>) ∧ E(v>, v
′
>) ∧ E(v′⊥, v⊥) ∧ E(v⊥, v

′
⊥) ∧Ψ′(v>, v⊥).

The purpose of universally quantifying the new variables v′> and v′⊥, instead of directly quantifying
v> and v⊥, is to force v′> and v′⊥ to range over {1, 3} (recall that E(v>, v>) and E(v⊥, v⊥) are both
atoms of Ψ). This is the same reason we add the vertex ∀ to the universal variable gadget.

We claim that P101 |= Ψ′(1, 3) iff P101 |= Ψ. It suffices to prove that P101 |= Ψ′(1, 3) implies
P101 |= Ψ′(3, 1),Ψ′(1, 1),Ψ′(3, 3). The first of these follows by symmetry. The second two are easy
to verify, and follow because the second literal in any clause is forbidden to be universally quantified
in Φ. If both paths > and ⊥ are w.l.o.g. evaluated to 1, then, even if some l1- or l3-literals are
forced to evaluate to 3, we can still extend this to a homomorphism from GΦ to P101.

Note that the properties required for the final paragraph of the previous proof are inconsistent
with our using the different diamond of Figure 11 in our clause gadget (other than for the centre
literal l2).

Proposition 6. Let P0a10b10c be such that its centre is between its loops (a+ b ≥ c and b+ c ≥ a).
Then QCSP(0a10b10c) is Pspace-complete.

Proof. Let m := max{a, b, c}. The proof proceeds exactly as in Proposition 5, except we use a new
pattern and ∀-selector. We replace the pattern P101 with the pattern P10b1. Note that the bracing
of the clause diamonds is still on the first non-loop vertex. The ∀-selector P10 is replaced by P10m .
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Figure 11: Incorrect gadget for QCSP(P101).
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Figure 12: Variable and clause gadgets in reduction to QCSP(P00100010000); b = 3,m = 4.

All new vertex-variables may be existentially quantified in the innermost block of quantifiers,
except those on the path between the labelled ∀ vertex-variable in a universal variable gadget and
that variable gadget’s centre vertex-variable. These are quantified existentially immediately after
the universal quantification of the labelled ∀ vertex-variable, in the obvious fashion. The new
variable and clause gadgets for P00100010000 are drawn in Figure 12.

We will give some explanation as to why this proof works. The crucial point is that there is
1.) an m-path from every vertex to one of the loops, 2a.) a point p on the path such that there
is an m-path from p to the left loop and no m-path from p to the right loop, and 2b.) a point q
on the path such that there is an m-path from q to the right loop and no m-path from p to the
left loop. The conditions a+ b ≥ c and b+ c ≥ a are required to force properties 2a and 2b. The
properties 1, 2a and 2b allow for a faithful simulation of QNAE3SAT.

Proposition 7. Let P be a weakly balanced 0-centred path, then QCSP(P) is Pspace-complete.

Proof. Let P0a10b10c be the path that is obtained from P if one retains only the loops nearest the
centre, one on each side. Use the reduction of the previous proposition. The important point is
that it is possible to evaluate {v>, v⊥} as the self-loops at {a+ 1, a+ 2 + b} – and we will at some
point be forced to choose, say, v> to be a + 1 and v⊥ to be a + 2 + b (when, e.g., v′> is evaluated
as 1 and v′⊥ is evaluated as a+ b+ c+ 2).

4.1.2 P10101 and weakly balanced 1-centred paths

We begin with the simplest weakly balanced 1-centred path, P10101, which in some sense is also
the trickiest.

Proposition 8. QCSP(P10101) is Pspace-complete.
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Figure 13: Variable gadgets in reduction to QCSP(P10101).
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Figure 14: Clause gadget in reduction to QCSP(P10101).

Proof. We work as in Proposition 5, but with pattern P10101 and ∀-selector P10. We will need more
sophisticated variable gadgets, along with some vertical bracing in the diamonds. The requisite
gadgets are depicted in Figures 13 and 14. Finally, not only is v1 (likewise, v2) connected by an
edge to a literal li (if v1 = li), but on the other side v′1 is also connected by an edge to l′i. We
assume for now that the paths > and ⊥ are evaluated to 1 and 5. We need the extra edge from l′i
to v′1 as an evaluation of l1 on a clause diamond to, e.g., 1, no longer, in itself, enforces that l′i be
evaluated to 5. In the existential variable gadgets, v1 must be evaluated to either 1 or 5, and v′1
must be evaluated to the other. In a universal gadget, the loop adjacent to the vertex ∀ will be
evaluated to any of 1, 3 or 5 – but v2 and v′2 must still be evaluated to opposites in 1 and 5. We
depict an example of the situation where the loop adjacent to ∀ is evaluated to 3, but the other
vertices are mapped so as to set v2 to 1 and v′2 to 5 (this is the left-hand diamond of Figure 15).

Finally, we must explain what happens in the degenerate cases in which v> and v⊥ are not
evaluated to 1 and 5, respectively (or vice-versa). It is not hard to see that this is no problem, even
when universal variables are evaluated anywhere. Two examples of these degenerate cases, when
v> and v⊥ are evaluated firstly to 1 and 1, and, secondly, to 1 and 3 are drawn in the centre and
right of Figure 15. In both cases, we consider what happens when the evaluation of a universal
variable forces the left-hand node of the gadget to be evaluated to 5.

It may be asked why we did not consider using a pattern of P101 and ∀-selector P10 in the previous
proof, while, instead of beginning with ∀v′>, v′⊥, using ∃v′>∀v′⊥. This would then select the centre
loop for v> along with at least once an outer loop for v⊥. This proof would work for a simulation
of the NP-hard NAE3SAT, but breaks down for the quantified variables of QNAE3SAT.

We will now briefly consider the paths P101d01.

Proposition 9. For all d, QCSP(P101d01) is Pspace-complete.
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Figure 15: Degenerate mappings in QCSP(P10101).

Proof. We may proceed as in the proof of Proposition 8, but with pattern P101d01 and ∀-selector
P1d0. The vertical path braces in the diamonds become of length d + 2, though one may verify
that vertical bracing is actually unnecessary when d ≥ 2.

Proposition 10. If P is a weakly balanced 1-centred path, then QCSP(P) is Pspace-complete.

Proof. The weakly balanced 1-centred cases have the form α10c1d0e1β, in which |α| = a, |β| = b,
c, d, e 6= 0 and a + c + 2 < a+b+c+d+e+3

2
< a + c + d + 1 (this final stipulation ensures that centre

falls in the 1d).
If a+ c 6= e+ b, then let m′ := min{a+ c, e+ b}. If a+ c < e+ b then set l := e; if e+ b < a+ c

then set l := c. We may proceed as in the proof of Proposition 5, but with pattern P10l1 and
∀-selector P1d0m′+1 .

Otherwise, a+ c = e+ b. Let m := max{c, e}.
If a, b ≤ min{c, e} we may proceed as in the proof of Proposition 8, but with pattern P10m1d0m1

and ∀-selector P1d0m (the vertical path braces in the diamonds should be of length d+ 2m).
If c, e ≤ min{a, b} we may proceed as in the proof of Proposition 8, but with pattern P10m1d0m1

and ∀-selector P1d0max{a,b} (the vertical path braces in the diamonds should be of length d+ 2m).
If a, e ≤ min{b, c} we may proceed as in the proof of Proposition 8, but with pattern P10m1d0m1

and ∀-selector P1d0max{b,c} (the vertical path braces in the diamonds should be of length d+ 2m).
If b, c ≤ min{a, e} we may proceed as in the proof of Proposition 8, but with pattern P10m1d0m1

and ∀-selector P1d0max{a,e} (the vertical path braces in the diamonds should be of length d+2m).

4.1.3 Remaining path cases

We are close to having exhausted the possible forms that a partially reflexive path may take.

Proposition 11. Let P be of the form α1b0a such that P is not 0-eccentric and |α|+1 ≤ |α|+b+a+1
2

≤
|α|+ b (the centre is in the 1b segment), then QCSP(P) is Pspace-complete.

Proof. Note that 0 ≤ a < |α|. Since P is of the form γ := α1b0a and not 0-eccentric, there exists
a right-most 10 ∈ α at position c ≥ a (this is the position of the 1). That last 10 is of the form
10e1 and then it hits a sequence of 1s that merge into the 1b in the centre of γ. We may proceed
as in the proof of Proposition 5, but with pattern P10e1 and ∀-selector P1b+a−c0c .

Theorem 4. If P is not a 0-eccentric path, then QCSP(P) is Pspace-complete.

Proof. Suppose P is not a 0-eccentric path. Then, if P is weakly balanced, the result follows from
Propositions 7 and 10. Otherwise, P is of the form of Proposition 11, and the result follows from
that proposition.
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4.2 NP-hardness for remaining trees

Theorem 5. Let T be a tree that is not quasi-loop-connected. Then QCSP(T ) is NP-hard.

Proof. Let T and its associated λ := λT be given. Define µ(x, y) to be the minimum distance
between some reflexive subtree Tx (at distance λ from x) and some reflexive subtree Ty (at distance
λ from y). Note that we are considering all possible reflexive subtrees Tx and Ty. In particular,
since µ(x, y) is a minimum, it is sufficient to consider only such reflexive subtress that are maximal
under inclusion. Let µ := max{µ(x, y) : x, y ∈ T}. Since T is not quasi-loop connected, µ > 1.
A subpath P ⊆ T is said to have the µ-property if it connects two (maximal under inclusion)
reflexive subtrees Tx and Ty that witness the maximality of µ, as just defined. Let ν be the size of
the largest induced reflexive subtree of T .

Let P be the set of induced subpaths P of T that have the µ-property, relabelled with vertices
{1, . . . , n := |P |} in the direction from Tx to Ty. Note that the paths in P have loops on neither
vertex 2 nor vertex n− 1. Note also that P is closed under reflection of paths (i.e., the respective
mapping of 1, . . . , n to n, . . . , 1). We would like to reduce from NAE3SAT exactly as in the proof
of Proposition 5, with pattern P10µ−11 and ∀-selector P1ν0λ . The sentence we would create for
input for QCSP(T ) has precisely two universal quantifiers, at the beginning (i.e. this is the only
use of the ∀-selector). The point is that somewhere we would forcibly stretch v> and v⊥ to be at
distance µ (when this distance is less, it will only make it easier to extend to homomorphism).
However, this method will only succeed if there is the path P10µ−11 ∈ P.

For P ∈ P, let ∆(P) be the distance from the end of the path P (vertex n) to the nearest loop.
Let ∆ := max{∆(P) : P ∈ P}. We build an input Ψ for QCSP(T ) as in the proof of Proposition 5,
with pattern P10∆−11, except for the point at which we have only the variables v> and v⊥ remaining
free (i.e., the one place we would come to use a ∀-selector). Here, we use the ∀-selector P0µ−11ν0λ

for v> and P1ν0λ for v>. For the correctness of this, note that a walk of µ− 1 will always get you
to the penultimate loop along a path P ∈ P, which is sometimes at distance ∆ from the end (and
is always at distance ≤ ∆ from the end).
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