Skip to main content

Reducing the Search Space of Resource Constrained DCOPs

  • Conference paper
  • 1734 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

Distributed constraint optimization problems (DCOPs) have been studied as a basic framework of multi-agent cooperation. The Resource Constrained DCOP (RCDCOP) is a special DCOP framework that contains n-ary hard constraints for shared resources. In RCDCOPs, for a value of a variable, a certain amount of the resource is consumed. Upper limits on the total use of resources are defined by n-ary resource constraints. To solve RCDCOPs, exact algorithms based on pseudo-trees employ virtual variables whose values represent use of the resources. Although, virtual variables allow for solving the problems without increasing the depth of the pseudo-tree, they exponentially increase the size of search spaces. Here, we reduce the search space of RCDCOPs solved by a dynamic programming method. Several boundaries of resource use are exploitable to reduce the size of the tables. To employ the boundaries, additional pre-processing and further filtering are applied. As a result, infeasible solutions are removed from the tables. Moreover, multiple elements of the tables are aggregated into fewer elements. By these modifications, redundancy of the search space is removed. One of our techniques reduces the size of the messages by an order of magnitude.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowring, E., Tambe, M., Yokoo, M.: Multiply constrained distributed constraint optimization. In: AAMAS 2006, pp. 1413–1420 (2006)

    Google Scholar 

  2. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154(1-2), 199–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS 2008, pp. 639–646 (2008)

    Google Scholar 

  4. Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the ACM 32(14), 755–761 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: AAMAS 2008, pp. 599–606 (2008)

    Google Scholar 

  6. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with structured resource constraints. In: AAMAS 2009, pp. 923–930 (2009)

    Google Scholar 

  7. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI), vol. 3394, pp. 310–317. Springer, Heidelberg (2005)

    Google Scholar 

  8. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using cooperative mediation. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS (LNAI), vol. 3394, pp. 438–445. Springer, Heidelberg (2005)

    Google Scholar 

  9. Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Matsuo, H.: Resource constrained distributed constraint optimization with virtual variables. In: AAAI 2008, pp. 120–125 (2008)

    Google Scholar 

  10. Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Matsuo, H.: Directed soft arc consistency in pseudo trees. In: AAMAS 2009, pp. 1065–1072 (2009)

    Google Scholar 

  11. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pecora, F., Modi, P., Scerri, P.: Reasoning about and dynamically posting n-ary constraints in ADOPT. In: DCR at AAMAS 2006 (2006)

    Google Scholar 

  13. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: IJCAI 2005, pp. 266–271 (2005)

    Google Scholar 

  14. Schiex, T.: A note on CSP graph parameters. Technical report 1999/03, INRA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Faltings, B., Matsuo, H. (2011). Reducing the Search Space of Resource Constrained DCOPs. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics