Abstract
The distance between two graphs is usually defined by means of the size of a largest common subgraph. This common subgraph may be an induced subgraph, obtained by removing nodes, or a partial subgraph, obtained by removing arcs and nodes. In this paper, we introduce two soft CSPs which model these two maximum common subgraph problems in a unified framework. We also introduce and compare different CP models, corresponding to different levels of constraint propagation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bunke, H., Sharer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3), 255–259 (1998)
Garey, M.R., Johnson, D.S.: Computer and intractability. Freeman, New York (1979)
Régin, J.-C.: Développement d’Outils Algorithmiques pour l’Intelligence Artificielle. Application à la Chimie Organique. PhD thesis, Université Montpellier II (1995)
Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computeraided Molecular Design 16(7), 521–533 (2002)
Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM Journal on Computing 15(4), 1054–1068 (1986)
Durand, P.J., Pasari, R., Baker, J.W., Tsai, C.: An efficient algorithm for similarity analysis of molecules. Internet Journal of Chemistry 2 (1999)
Raymond, J.W., Gardiner, E.J., Willett, P.: Calculation of graph similarity using maximum common edge subgraphs. The Computer Journal 45(6) (2002)
McGregor, J.J.: Backtrack search algorithms and the maximal common subgraph problem. Software Practice and Experience 12(1), 23–34 (1982)
Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common subgraph detection algorithms: A performance analysis of three algorithms on a wide database of graphs. Graph Algorithms and Applications 11(1), 99–143 (2007)
Vismara, P., Valery, B.: Finding maximum common connected subgraphs using clique detection or constraint satisfaction algorithms. Communications in Computer and Information Science 14(1), 358–368 (2008)
Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalog: Past, present and future. Constraints 12(1), 21–62 (2007)
Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)
Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–464. Springer, Heidelberg (2001)
Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: AAAI 1994, pp. 362–367 (1994)
Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldiff constraint: An empirical survey. Artificial Intelligence 172(18), 1973–2000 (2008)
Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)
Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem. Constraints 13(4), 518–537 (2008)
Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with constraint programming. Constraints 15(3), 327–353 (2010)
Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), 850–864 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ndiaye, S.N., Solnon, C. (2011). CP Models for Maximum Common Subgraph Problems. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)