Abstract
In this paper we present a QBF solver that is based on BDD technologies but includes optimizations from search-based algorithms. We enhance the early quantification technique from model checking, favoring aggressive quantification over conjunction of BDDs. BDD Constraint propagation is also described, a strategy inspired by the efficient simplifications applied to CNFs in DPLL-based algorithms . Some dynamic variable elimination heuristics that enforce quantification and bounded space usage are also presented, coping with the difficulties faced by static heuristics included in previous BDD-based solvers. Experimental results show that our solver outperforms both symbolic and search-based competitive solvers in formal verification benchmarks with practical applications in equivalence checking and theorem proving, by completing more problems or finishing in less time. Some preliminary results also show that the solver is able to handle some other hard problems for symbolic solvers in the planning domain with similar efficiency. The benchmarks we used contain QBFs of nearly up to 9000 variables and are available at the QBFLIB website.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and Smaller BDDs via Common Function Structure. In: Technical Report #CSE-TR-445-01. University of Michigan (2001)
Audemard, G., Sas, L.: SAT Based BDD Solver for Quantified Boolean Formulas. In: 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 82–89. IEEE Computer Society, Los Alamitos (2004)
Ayari, A., Basin, D.: Bounded Model Construction for Monadic Second-Order Logics. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 99–113. Springer, Heidelberg (2000)
Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, Springer, Heidelberg (2005)
Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking. J. Adv. Comp. Sci. 58 (2003)
Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Comp. 35, 677–691 (1986)
Burch, J.R., Clarke, E.M., Mcmillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 10 20 States and Beyond. In: Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 428–439. IEEE Comput. Soc. Press, Los Alamitos (1990)
Chatalic, P., Simon, L.: Zres:The old Davis-Putnam procedure meets ZBDDs. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 449–454. Springer, Heidelberg (2000)
Coudert, O., Madre, J.C.: A Unified Framework for the Formal Verification of Sequential Circuits. In: IEEE International Conference on Computer-Aided Design (ICCAD), pp. 126–129. IEEE, Los Alamitos (1990)
Darwiche, A., Pipatsrisawat, K.: Complete Algorithms. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, pp. 99–130. IOS Press, Amsterdam (2009)
Davis, M., Putnam, M.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Franco, J., Kouril, M., Schlipf, J.S., Ward, J., Weaver, S., Dransfield, M., Vanfleet, W.M.: SBSAT: A State-Based, BDD-Based Satisfiability Solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 398–410. Springer, Heidelberg (2004)
Giunchiglia, E., Narizzano, M., Tacchella, A., Tacchella, O.: QUBE: A system for deciding Quantified Boolean Formulas Satisfiability. In: IJCAR, pp. 364–369 (2001)
Giunchiglia, E., Marin, P., Narizzano, M.: QBF Reasoning. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, pp. 99–130. IOS Press, Amsterdam (2009)
Huang, J., Darwiche, A.: Toward good elimination orders for symbolic SAT solving. In: 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 566–573 (2004)
Jin, H., Somenzi, F.: CirCUs: A hybrid satisfiability solver. In: International Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 211–223 (2004)
Kleine, H., Bubeck, U.: QBF Theory. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, pp. 99–130. IOS Press, Amsterdam (2009)
Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)
Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver. J. Sat, Bool. Mod. and Comp. 7, 71–76 (2010)
Narizzano, M.: QBFLIB, The Quantified Boolean Formulas Satisfiability Library, http://www.qbflib.org/
Olivo, O., Emerson, E.A.: A More Efficient BDD-Based QBF Solver. In: Tech Report, http://www.cs.utexas.edu/~olivo/CP/More_Efficient_BDD_QBF_Tech_Report.pdf
Pigorsch, F., Schol, C.: Exploiting structure in an AIG based QBF solver. In: Proc. of DATE 2009 (2009) (to appear)
Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. J. Disc. App. Math. 130(2) (2003)
Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg (2007)
Ranjan, R.K., Aziz, A., Brayton, R.K., Plessier, B., Pixley, C.: Efficient BDD Algorithms for FSM Synthesis and Verification. In: IEEE/ACM Proceedings International Workshop on Logic Synthesis. IEEE/ACM (1995)
Rintanen, J.: Constructing conditional plans by a theorem prover. J. A.I. 10, 323–352 (1999)
Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)
Somenzi, F.: CUDD: CU Decision Diagram Package, http://vlsi.colorado.edu/~fabio/CUDD/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Olivo, O., Emerson, E.A. (2011). A More Efficient BDD-Based QBF Solver. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)