Abstract
In this paper we present a model for the carpet cutting problem in which carpet shapes are cut from a rectangular carpet roll with a fixed width and sufficiently long length. Our exact solution approaches decompose the problem into smaller parts and minimise the needed carpet roll length for each part separately. The customers requirements are to produce a cutting solution of the carpet within 3 minutes, in order to be usable during the quotation process for estimating the amount of carpet required. Our system can find and prove the optimal solution for 106 of the 150 real-world instances provided by the customer, and find high quality solutions to the remainder within this time limit. In contrast the existing solution developed some years ago finds (but does not prove) optimal solutions for 30 instances. Our solutions reduce the wastage by more than 35% on average compared to the existing approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)
Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)
Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–391. Springer, Heidelberg (2001)
Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint in the context of non-overlapping rectangles. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 21–35. Springer, Heidelberg (2008)
Fekete, S.P., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55(3), 569–587 (2007)
George, A.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)
Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur. J. Oper. Res. 83(1), 39–56 (1995)
Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in cumulative problems. C. R. Acad. Sci., Paris, Sér. I, Math. 294(2), 209–211 (1982)
Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)
Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28(1), 59–70 (1990)
Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing problem. Manage. Sci. 44(3), 388–399 (1998)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC 2001, pp. 530–535 (2001)
Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)
Pearson, C., Birtwistle, M., Verden, A.R.: Reducing material wastage in the carpet industry. In: PAP 1998, pp. 101–112 (1998)
Pearson, C., Birtwistle, M., Verden, A.R.: Reducing material wastage in the carpet industry. In: INAP 1998, pp. 88–99 (1998)
Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J. Comput. 19(1), 36–51 (2007)
Schulte, C., Tack, G.: Views iterators for generic constraint implementations. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg (2005), doi:10.1007/11564751_71
Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource constrained project scheduling problem with generalized precedences by lazy clause generation (September 2010), http://arxiv.org/abs/1009.0347
Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)
Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008)
Stuckey, P.J., de la Banda, M.G., Maher, M.J., Marriott, K., Slaney, J.K., Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent models to efficient solutions. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 9–13. Springer, Heidelberg (2005)
Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schutt, A., Stuckey, P.J., Verden, A.R. (2011). Optimal Carpet Cutting. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)