Abstract
In this paper we propose a recurrent neuro-fuzzy network (RFNN) based on Takagi-Sugeno inference with feedback inside the RFNN for nonlinear identification in mechatronic systems. The parameter optimization of the RFNN is achieved using a differential evolutionary algorithm. The experimental results are analyzed using a study cases modeled in Simulink: the linear power amplifier and the actuator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stratulat, F., Ionescu, F.: Linear Control Systems. Steinbeis-Edition (2009)
Ionescu, F.: Nonlinear Mathematical Behaviour and Modelling of Hydraulic Drive Systems. In: Proceedings of the 2nd World Congress of Nonlinear Analysts, vol. 30, part 3, pp. 1447–1461. Pergamon Press, Athens (1996)
Arotaritei, D., Ionescu, F., Constantin, G., Stratulat, F., Arghir, S.: Nonlinear Mathematical Models for Mechanics, Hydraulics, Pneumatics and Electric Systems - Analytical and Neuro-Fuzzy Approaches. DFG-Research Report. HTWG-Konstanz, Germany (2010)
Buckley, J.J.: Sugeno type controllers are universal controllers. Fuzzy Sets and Systems 53, 299–303 (1993)
Castro, J.L., Delgado, M.: Fuzzy systems with defuzzification are Universal approximators. IEEE Transactions on Systems, Man and Cybernetic 26(1), 149–152 (1996)
Chak, C.K., Feng, G., Ma, J.: An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 28(3), 436–446 (1998)
Gonzalez-Olvera, M.A., Tang, Y.: A new recurrent neuro-fuzzy network for identification of dynamic systems. Fuzzy Sets and Systems 158, 1023–1035 (2007)
Gonzalez-Olvera, M.A., Tang, Y.: Nonlinear System Identification and Control Using an Input-Output Recurrent Neurofuzzy Network. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, pp. 7480–7485 (2008)
Gorrini, V., Bersini, H.: Recurrent Fuzzy Systems. In: Proceedings of the 3rd Conference on Fuzzy Systems (FUZZ-IEEE 1994), pp. 193–198 (1994)
Graves, D., Pedrycz, W.: Fuzzy prediction architecture using recurrent neural networks. Neurocomputing 72, 1668–1678 (2009)
Yu, W.: State-Space Recurrent fuzzy neural networks for nonlinear system identification. Neural Processing Letters 22, 391–404 (2005)
Juang, C.F.: A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Transactions on Fuzzy Systems 10(2), 155–170 (2002)
Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8(4), 349–366 (2000)
Savran, A.: An adaptive recurrent fuzzy system for nonlinear identification. Applied Soft Computing 7, 593–600 (2007)
Abdelrahim, E.M., Yahagi, T.: A new transformed input-domain ANFIS for highly nonlinear system modeling and prediction. In: Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 655–660 (2001)
Babuška, R., Verbruggen, H.: Neuro-fuzzy methods for nonlinear system identification-review. Annual Reviews in Control 27, 73–85 (2003)
Baruch, et al.: A fuzzy-neural multi-model for nonlinear systems, identification and control. Fuzzy Sets and Systems 159, 2650–2667 (2008)
Baruch, I., Gortcheva, E., Thomas, F., Garrido, R.: A Neuro-Fuzzy model for nonlinear plants identification. In: Proceedings of the IASTED International Conference Modeling and Simulation MS 1999, pp. 326–331 (1999)
Bersini, H., Gorrini, V.: A simplification of the backpropagation-throughtime algorithm for optimal neurocontrol. IEEE Trans. Neural Networks 8(2), 437–441 (1997)
Price, K., Rainer, S., Jouni, L.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Heidelberg (2005)
Chakraborty, U.: Advances in Differential Evolution. SCI. Springer, Heidelberg (2008)
Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computing 1(2), 270–280 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ionescu, F., Arotaritei, D., Arghir, S. (2011). Adaptive Recurrent Neuro-Fuzzy Networks Based on Takagi-Sugeno Inference for Nonlinear Identification in Mechatronic Systems. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23851-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-23851-2_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23850-5
Online ISBN: 978-3-642-23851-2
eBook Packages: Computer ScienceComputer Science (R0)