Skip to main content

Using Virtual Embryogenesis in Multi-robot Organisms

  • Conference paper
Adaptive and Intelligent Systems (ICAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6943))

Included in the following conference series:

Abstract

We introduce a novel method to apply a pluripotent process of virtual embryogenesis (VE) on modular robotics. The VE software is able to perform simulations on recent computer hardware and can be used to control robotic hardware. Each robot controlled by our VE-software mimics a cell within a virtual embryogenesis process and is able to signal other robots to dock, thus initiating or advancing the build process of a multi-robot organism. In addition to that, our system can also be used to perform primitive locomotion e.g. wall avoidance behaviour in single robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. REPLICATOR: Robotic Evolutionary Self-Programming and Self-Assembling Organisms, 7th Framework Programme Project No FP7-ICT-2007.2.1. European Communities (2008-2012)

    Google Scholar 

  2. SYMBRION: Symbiotic Evolutionary Robot Organisms, 7th Framework Programme Project No FP7-ICT-2007.8.2. European Communities (2008-2012)

    Google Scholar 

  3. Carroll, S.B.: Endless forms: the evolution of gene regulation and morphological diversity. Cell 101(6), 577–580 (2000), http://view.ncbi.nlm.nih.gov/pubmed/10892643

  4. Carroll, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo. W. W. Norton (April 2006)

    Google Scholar 

  5. Crick, F.: Diffusion in embryogenesis. Nature 225(5231), 420–422 (1970), http://dx.doi.org/10.1038/225420a0

    Article  Google Scholar 

  6. Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T.H., Nouyan, S., Ampatzis, C., Deneubourg, J.L., Baldassarre, G., Nolfi, S., Mondada, F., Floreano, D., Gambardella, L.M.: The SWARM-BOTS project, pp. 31–44 (2005), http://www.springerlink.com/content/e4klufrqeqe6nvc2

  7. Ephrussi, A., Johnston, D.S.: Seeing is believing - the bicoid morphogen gradient matures. Cell 116(2), 143–152 (2004)

    Article  Google Scholar 

  8. GNU Project: GCC, the GNU compiler collection, version 4.4.3, http://www.gnu.org/software/gcc/gcc.html

  9. Gurdon, J.B., Bourillot, P.Y.: Morphogen gradient interpretation. Nature 413(6858), 797–803 (2001), http://dx.doi.org/10.1038/35101500

    Article  Google Scholar 

  10. Intel Corporation: Intel c++ compiler, version 12.0.2, http://software.intel.com/en-us/articles/intel-compilers/

  11. Jin, Y., Schramm, L., Sendhoff, B.: A gene regulatory model for the development of primitive nervous systems. In: INNS-NNN Symposia on Modeling the Brain and Nervous Systems. Springer, Heidelberg (2008)

    Google Scholar 

  12. Kernbach, S., Schmickl, T., Hamann, H., Stradner, J., Schwarzer, C., Schlachter, F., Winfield, A., Matthias, R.: Adaptive action selection mechanisms for evolutionary multimodular robotics. In: Proc. of the 12th International Conference on the Synthesis and Simulation of Living Systems (AlifeXII). MIT Press, Denmark (2010)

    Google Scholar 

  13. Kernbach, S., Scholz, O., Harada, K., Popesku, S., Liedke, J., Raja, H., Liu, W., Caparrelli, F., Jemai, J., Havlik, J., Meister, E., Levi, P.: Multi-robot organisms: State of the art. In: ICRA 2010, Workshop on Modular Robots: State of the Art, Anchorage (2010)

    Google Scholar 

  14. Knuth, D.E.: The art of computer programming, sorting and searching, 2nd edn. Addison Wesley Longman Publishing Co., Inc., USA (1998)

    MATH  Google Scholar 

  15. Kornienko, S., Kornienko, O., Nagarathinam, A., Levi, P.: From real robot swarm to evolutionary multi-robot organism. In: 2007 IEEE Congress on Evolutionary Computation, pp. 1483–1490 (2007)

    Google Scholar 

  16. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  17. Müller, G.B.: Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics 8, 943–949 (2007)

    Article  Google Scholar 

  18. Roggen, D., Federici, D., Floreano, D.: Evolutionary morphogenesis for multi-cellular systems. Genetic Programming and Evolvable Machines 8, 61–96 (2007)

    Article  Google Scholar 

  19. Rubenstein, M., Shen, W.M.: Scalable self-assembly and self-repair in a collective of robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, Missouri, USA (October 2009)

    Google Scholar 

  20. Rubenstein, M., Shen, W.M.: Automatic scalable size selection for the shape of a distributed robotic collective. In: IROS (October 2010)

    Google Scholar 

  21. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W.: Object-Oriented Modeling and Design, 1st edn. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  22. Schramm, L., Jin, Y., Sendhoff, B.: Evolutionary synthesis and analysis of a gene regulatory network for dynamically stable growth and regeneration. BioSystems (2010) (submitted)

    Google Scholar 

  23. Shvartsman, S.Y., Coppey, M., Berezhkovskii, A.M.: Dynamics of maternal morphogen gradients in drosophila. Current Opinion in Genetics & Development 18(4), 342–347 (2008)

    Article  Google Scholar 

  24. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., USA (2000)

    MATH  Google Scholar 

  25. Thenius, R., Bodi, M., Schmickl, T., Crailsheim, K.: Growth of structured artificial neural networks by virtual embryogenesis. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 118–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Thenius, R., Bodi, M., Schmickl, T., Crailsheim, K.: Using virtual embryogenesis for structuring controllers. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 312–313. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Thenius, R., Dauschan, M., Schmickl, T., Crailsheim, K.: Regenerative abilities in modular robots using virtual embryogenesis. In: Bouchachia, A. (ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 238–247. Springer, Heidelberg (2011)

    Google Scholar 

  28. Thenius, R., Schmickl, T., Crailsheim, K.: Novel concept of modelling embryology for structuring an artificial neural network. In: Troch, I., Breitenecker, F. (eds.) Proc. of the MATHMOD (2009)

    Google Scholar 

  29. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  30. Ungerer, G., Dionne, J., Durant, M.: uClinux: Embedded Linux/Microcontroller Project (September 2008), http://www.uclinux.org

  31. Weatherbee, S.D., Carroll, S.B.: Selector genes and limb identity in arthropods and vertebrates. Cell 97(3), 283–286 (1999)

    Article  Google Scholar 

  32. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University Evanston, IL (1999), http://ccl.northwestern.edu/netlogo/

  33. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology 25(1), 1–47 (1969)

    Article  Google Scholar 

  34. Wolpert, L.: Positional information revisited. Development 107, 3–12 (1989)

    Google Scholar 

  35. Wolpert, L.: One hundred years of positional information. Trends Genet 12(9), 359–364 (1996), http://view.ncbi.nlm.nih.gov/pubmed/8855666

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dauschan, M., Thenius, R., Schmickl, T., Crailsheim, K. (2011). Using Virtual Embryogenesis in Multi-robot Organisms. In: Bouchachia, A. (eds) Adaptive and Intelligent Systems. ICAIS 2011. Lecture Notes in Computer Science(), vol 6943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23857-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23857-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23856-7

  • Online ISBN: 978-3-642-23857-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics