Skip to main content

Semantic Retrieval of Images by Learning from Wikipedia

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6884))

Abstract

In this paper we develop a prototype of an image management system supporting the user organizing his images with the help of semantic annotations. The system automatically contributes such annotations to close the gap between images and concepts expressing their content. We propose a novel integration into a Semantic Desktop and the usage of Wikipedia to address the common problem of initial knowledge acquisition and improvement of the performance. With an evaluation on a challenging dataset out system outperforms a purely image processing based approach by 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adrian, B., Hees, J., van Elst, L., Dengel, A.: iDocument: Using ontologies for extracting and annotating information from unstructured text. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 249–256. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Adrian, B., Klinkigt, M., Maus, H., Dengel, A.: Using idocument for document categorization in nepomuk social semantic desktop. In: Proc. of I-KNOW 2009 and I-SEMANTICS 2009, 5th Int. Conference on Semantic Systems (iSemantics-2009), pp. 638–643. Verlag der Technischen Universität Graz (September 2009)

    Google Scholar 

  3. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40, 5:1-5:60 (2008)

    Google Scholar 

  4. Klinkigt, M., Kise, K.: From local features to global shape constraints: Heterogeneous matching scheme for recognizing objects under serious background clutter. In: Proc. of Asian Conference on Computer Vision, vol. 4, pp. 2150–2161. Springer, Heidelberg (2010)

    Google Scholar 

  5. Kong, H., Hwang, M., Kim, P.: Pims(personalized image management system) using ontologies. In: The 7th Int. Conference on Advanced Communication Technology, ICACT 2005, vol. 1, pp. 277–280 (2005)

    Google Scholar 

  6. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of ICCV, p. 1150 (1999)

    Google Scholar 

  7. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. of CVPR (2007)

    Google Scholar 

  8. Renn, M., van Beusekom, J., Keysers, D., Breuel, T.: Automatic image tagging using community-driven online image databases. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 112–126. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Rohrbach, M., Stark, M., Szarvas, G., Rohrbach, I.G., Schiele, B.: What helps where - and why? semantic relatedness for knowledge transfer. In: CVPR (2010)

    Google Scholar 

  10. Sandhaus, P., Boll, S.: Semantic analysis and retrieval in personal and social photo collections. Multimedia Tools and Applications 51, 5–33 (2011)

    Article  Google Scholar 

  11. Sauermann, L., van Elst, L., Dengel, A.: Pimo - a framework for representing personal information models. In: Pellegrini, T., Schaffert, S. (eds.) Proceedings of I-Semantics 2007, pp. 270–277. JUCS (2007)

    Google Scholar 

  12. Sawant, N., Li, J., Wang, J.: Automatic image semantic interpretation using social action and tagging data. Multimedia Tools and Applications 51, 213–246 (2011)

    Article  Google Scholar 

  13. Yang, J., Fan, J., Hubball, D., Gao, Y., Luo, H., Ribarsky, W.: Semantic image browser: Bridging information visualization with automated intelligent image analysis. In: Proc. IEEE Symposium on Visual Analytics Science and Technology (2006)

    Google Scholar 

  14. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA (June 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klinkigt, M., Kise, K., Maus, H., Dengel, A. (2011). Semantic Retrieval of Images by Learning from Wikipedia. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23866-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23866-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23865-9

  • Online ISBN: 978-3-642-23866-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics