Skip to main content
  • 2062 Accesses

Abstract

The ground-state phase diagram of the t-J model in one dimension is studied by means of the Density Matrix Renormalization Group. The phase boundaries separating the repulsive from the attractive Luttinger-liquid (LL) phase, and also the boundaries of the spin-gap region and phase-separation, are determined on the basis of correlation functions and energy gaps. In particular, we shed light on a contradiction between variational and renormalization-group (RG) results about the extent of the spin-gap phase, that results larger than the variational but smaller than the RG one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Moreno, A. Muramatsu, and S. R. Manmana, Phys. Rev. B 83, 205113 (2011).

    Article  Google Scholar 

  2. T. Fabritius, N. Laorencie, and S. Wessel, Phys. Rev. B 82, 035402 (2010).

    Article  Google Scholar 

  3. Z. Y. Meng et al., Nature 464, 847 (2010).

    Article  Google Scholar 

  4. L. Bonnes and S. Wessel, arXiv:1101.0913 (2011).

  5. H. Feldner et al., arXiv:1101.1882 (2011).

  6. L. Fritz et al., arXiv:1101.3784 (2011).

  7. L. Bonnes and S. Wessel, arXiv:1101.5991 (2011).

  8. F. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  Google Scholar 

  9. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10, L271 (1977).

    Article  Google Scholar 

  10. M. Ogata, M. Lucchini, S. Sorella, and F. Assaad, Phys. Rev. Lett. 66, 2388 (1991).

    Article  Google Scholar 

  11. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  Google Scholar 

  12. S. R. White and D. Scalapino, Phys. Rev. B 57, 3031 (1998).

    Article  Google Scholar 

  13. H. J. Schulz, Phys. Rev. Lett 64, 2831 (1990).

    Article  Google Scholar 

  14. N. Kawakami and S.-K. Yang, Phys. Lett. A 148, 359 (1990).

    Article  Google Scholar 

  15. H. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553 (1990).

    Article  Google Scholar 

  16. P.-A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  17. P.-A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991).

    Article  Google Scholar 

  18. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004).

    MATH  Google Scholar 

  19. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  Google Scholar 

  20. F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1981).

    Article  MathSciNet  Google Scholar 

  21. J. Sólyom, Adv. Phys. 28, 201 (1979).

    Article  Google Scholar 

  22. V. J. Emery, In Highly Conducting One-dimensional Solids (Plenum, New York, 1979).

    Google Scholar 

  23. Y. C. Chen and T. K. Lee, Phys. Rev. B 47, 11548 (1993).

    Article  Google Scholar 

  24. C. S. Hellberg and E. J. Mele, Phys. Rev. B 48, 646 (1993).

    Article  Google Scholar 

  25. M. Nakamura, K. Nomura, and A. Kitazawa, Phys. Rev. Lett. 79, 3214 (1997).

    Article  Google Scholar 

  26. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

    Article  Google Scholar 

  27. S. R. White, Phys. Rev. B 48, 10345 (1993).

    Article  Google Scholar 

  28. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

    Article  Google Scholar 

  29. R. T. Clay, A. W. Sandvik, and D. K. Campbell, Phys. Rev. B 59, 4665 (1999).

    Article  Google Scholar 

  30. S. Ejima, F. Gebhard, and S. Nishimoto, Europhys. Lett. 70, 492 (2005).

    Article  Google Scholar 

  31. N. Kawakami and S.-K. Yang, Phys. Lett. 65, 2309 (1990).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, A., Muramatsu, A., Manmana, S. (2012). Phase Diagram of the 1D t-J Model. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_13

Download citation

Publish with us

Policies and ethics