Skip to main content

Optimization of Chaotic Micromixers Using Finite Time Lyapunov Exponents

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

In microfluidics mixing of different fluids is a highly non-trivial task due to the absence of turbulence. The dominant process allowing mixing at low Reynolds number is therefore diffusion, thus rendering mixing in plain channels very inefficient. Recently, passive chaotic micromixers such as the staggered herringbone mixer were developed, allowing efficient mixing of fluids by repeated stretching and folding of the fluid interfaces. The optimization of the geometrical parameters of such mixer devices is often performed by time consuming and expensive trial and error experiments. We demonstrate that the application of the lattice Boltzmann method to fluid flow in highly complex mixer geometries together with standard techniques from statistical physics and dynamical systems theory can lead to a highly efficient way to optimize micromixer geometries. The strategy applies massively parallel fluid flow simulations inside a mixer, where massless and non-interacting tracer particles are introduced. By following their trajectories we can calculate finite time Lyapunov exponents in order to quantify the degree of chaotic advection inside the mixer. The current report provides a review of our results published in (Sarkar, Narváez, and Harting, 2010) together with additional details on the simulation methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Sarkar, A. Narváez, and J. Harting. Quantification of the degree of mixing in chaotic micromixers using finite time Lyapunov exponents. Submitted for publication, arXiv:1012.5549, 2010.

  2. M. A. Burns. Microfabricated structures for integrated DNA analysis. Proc. National Acad. Sci. USA, 68(93):5556–5561, 1996.

    Article  Google Scholar 

  3. P. Watts and S. Haswell. Microfluidic combinatorial chemistry. Curr. Opin. Chem. Biol., 7:380–387, 1996.

    Article  Google Scholar 

  4. V. Hessel, H. Loewe, and F. Schoenfeld. Micromixers—A review on active and passive mixing principles. Chem. Eng. Sci., 60:2479–2501, 2005.

    Article  Google Scholar 

  5. H. Aref. Stirring by chaotic advection. J. Fluid Mech., 143:1–21, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Kim and A. Beskok. Quantification of chaotic strength and mixing in a micro fluidic system. J. Micromech. Microeng., 17:2197–2210, 2007.

    Article  Google Scholar 

  7. C. Zhang, D. Xing, and Y. Li. Micropumps, microvalves and micromixers within pcr microfluidic chips: Advances and trends. Biotech. Advances, 25:483–514, 2007.

    Article  Google Scholar 

  8. F. G. Bessoth, A. de Mello, and A. Manz. Microstructure for efficient continuous flow mixing. Analyt. Comm., 36:213–215, 1999.

    Article  Google Scholar 

  9. D. Gobby, P. Angeli, and A. Gavriliidis. Mixing characteristics of a T-type microfluidic mixers. J. Micromech. Microeng., 11:126–132, 2001.

    Article  Google Scholar 

  10. Y. Mingquiang and H. Bau. The kinematics of bend-induced stirring in micro-conduits. In Proc. ASME Intl. Mech. Sys. (MEMS’97), Nagoya, Japan, pp. 96–101, 2000.

    Google Scholar 

  11. A. Strook, S. Dertinger, A. Adjari, I. Mezic, H. Stone, and G. Whiteside. Chaotic mixer for microchannels. Science, 295:647–651, 2002.

    Article  Google Scholar 

  12. T. K. Kang, M. K. Singh, T. H. Kwon, and P. D. Anderson. Chaotic mixing using periodic and aperiodic sequences of mixing protocols. Microfluids and Nanofluids, 4(6):589–599, 2007.

    Article  Google Scholar 

  13. C. Ziemann, L. A. Smith, and J. Kurths. Localized Lyapunov exponents and the prediction of predictability. Phys. Lett. A, 4:237–251, 2000.

    Article  Google Scholar 

  14. G. Lapeyre. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. Chaos, 12(3):688–698, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, London, 2001.

    MATH  Google Scholar 

  16. Y. H. Qian, D. d’Humieres, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett., 17(6):479–484, 1992.

    Article  MATH  Google Scholar 

  17. P. Bhatnagar, E. Gross, and M. Krook. A model for collision process in gases. Small amplitude process in charged and neutral one-component systems. Phys. Rev., 94:511–525, 1954.

    Article  MATH  Google Scholar 

  18. D. Ruiquiang and L. Jianping. Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. A, 364:396–400, 2007.

    Article  Google Scholar 

  19. X. Tang and A. Boozer. Finite time Lyapunov exponent and chaotic advection-diffusion equation. Physica D, 95:283–305, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Lee, C. Shih, P. Tabeling, and C.-M. Ho. Experimental study and non-linear dynamics of time-periodic micro chaotic mixers. J. Fluid Mech., 575:425–448, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 16:285–317, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  22. X. Shan and H. Chen. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E, 47(3):1815, 1993.

    Article  Google Scholar 

  23. X. Shan and H. Chen. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E, 49(4):2941, 1994.

    Article  Google Scholar 

  24. H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee. A ternary lattice Boltzmann model for amphiphilic fluids. Proc. R. Soc. Lond. A, 456:2043, 2000.

    Article  MATH  Google Scholar 

  25. J. Harting, M. Harvey, J. Chin, M. Venturoli, and P. V. Coveney. Large-scale lattice Boltzmann simulations of complex fluids: Advances through the advent of computational grids. Phil. Trans. R. Soc. Lond. A, 363:1895–1915, 2005.

    Article  Google Scholar 

  26. G. Giupponi, J. Harting, and P. V. Coveney. Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases. Europhys. Lett., 73:533–539, 2006.

    Article  Google Scholar 

  27. N. González-Segredo, J. Harting, G. Giupponi, and P. V. Coveney. Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic mesophases: Lattice-Boltzmann simulations. Phys. Rev. E, 73:031503, 2006.

    Article  Google Scholar 

  28. A. Narváez, T. Zauner, F. Raischel, R. Hilfer, and J. Harting. Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations. J. Stat. Mech: Theor. Exp., 2010:P211026, 2010.

    Article  Google Scholar 

  29. A. Narváez and J. Harting. A D3Q19 lattice-Boltzmann pore-list code with pressure boundary conditions for permeability calculations. Advances in Applied Mathematics and Mechanics, 2:685, 2010.

    MathSciNet  Google Scholar 

  30. J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter, and S. M. Pickles. Steering in computational science: Mesoscale modelling and simulation. Contemporary Physics, 44(5):417–434, 2003.

    Article  Google Scholar 

  31. J. Harting, C. Kunert, and H. Herrmann. Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. Europhys. Lett., 75:328–334, 2006.

    Article  Google Scholar 

  32. C. Kunert and J. Harting. Roughness induced apparent boundary slip in microchannel flows. Phys. Rev. Lett., 99:176001, 2007.

    Article  Google Scholar 

  33. J. Hyväluoma and J. Harting. Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett., 100:246001, 2008.

    Article  Google Scholar 

  34. C. Kunert, J. Harting, and O. I. Vinogradova. Random-roughness hydrodynamic boundary conditions. Phys. Rev. Lett., 105:016001, 2010.

    Article  Google Scholar 

  35. A. Komnik, J. Harting, and H. J. Herrmann. Transport phenomena and structuring in shear flow of suspensions near solid walls. J. Stat. Mech: Theor. Exp., P12003, 2004.

    Google Scholar 

  36. M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann. Simulation of claylike colloids. Phys. Rev. E, 72:011408, 2005.

    Article  Google Scholar 

  37. J. Harting, H. J. Herrmann, and E. Ben-Naim. Anomalous distribution functions in sheared suspensions. Europhys. Lett., 83:30001, 2008.

    Article  Google Scholar 

  38. F. Janoschek, F. Toschi, and J. Harting. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E, 82:056710, 2010.

    Article  Google Scholar 

  39. F. Jansen and J. Harting. From Bijels to Pickering emulsions: A lattice Boltzmann study. Phys. Rev. E, 83:046707, 2011.

    Article  Google Scholar 

  40. D. Groen, O. Henrich, F. Janoschek, P. Coveney, and J. Harting. Lattice-Boltzmann methods in fluid dynamics: Turbulence and complex colloidal fluids. In W. F. Bernd Mohr, editor, Jülich Blue Gene/P Extreme Scaling Workshop 2011. Jülich Supercomputing Centre, 52425 Jülich, Germany, apr 2011. FZJ-JSC-IB-2011-02; http://www2.fz-juelich.de/jsc/docs/autoren2011/mohr1/.

  41. J. Harting, F. Jansen, S. Frijters, F. Janoschek, and F. Günther. Nanoparticles as emulsion stabilizers. inSiDE, 9(1):48, 2011.

    Google Scholar 

  42. A. D. Stroock and G. J. McGraw. Investigation of the staggered herringbone mixer with a simple analytical model. Phil. Trans. R. Soc. Lond. A, 362:923–935, 2004.

    Article  Google Scholar 

  43. C. Li and T. Chen. Simulation and optimization of chaotic micromixer using lattice Boltzmann method. Sensors and Actuators B, 106:871–877, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarkar, A., Narváez, A., Harting, J. (2012). Optimization of Chaotic Micromixers Using Finite Time Lyapunov Exponents. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_24

Download citation

Publish with us

Policies and ethics