Skip to main content

Copper Substrate Catalyzes Tetraazaperopyrene Polymerization

  • Conference paper
Book cover High Performance Computing in Science and Engineering '11

Abstract

The polymerization of tetraazaperopyrene (TAPP) molecules on a Cu(111) substrate, as observed in recent STM experiments, has been investigated in detail by first principles calculations. Tautomerization is the first step required for the formation of molecular dimers and polymers. The substrate is found to catalyze this tautomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J V Barth, Annu. Rev. Phys. Chem. 58, 375 (2007).

    Article  Google Scholar 

  2. A Nilsson and L G M Pettersson, Surf. Sci. Rep. 55, 49 (2004).

    Article  Google Scholar 

  3. J A A W Elemans, S Lei, and S DeFeyter, Angew. Chem. Int. Ed. 48, 7298 (2009).

    Article  Google Scholar 

  4. S Lukas, G Witte, and C Wöll, Phys. Rev. Lett. 88, 028301 (2001).

    Article  Google Scholar 

  5. Q Chen and N V Richardson, Nature Materials 2, 324 (2003).

    Article  Google Scholar 

  6. S L Tait, A Langner, N Lin, R Chandrasekar, O Fuhr, M Ruben, and K Kern, ChemPhysChem 9, 2495 (2008).

    Article  Google Scholar 

  7. N Nyberg, M Odelius, A Nilsson, and L G M Petterson, J. Chem. Phys. 119, 12577 (2003).

    Article  Google Scholar 

  8. R Pawlak, S Clair, V Oison, M Abel, O Ourdjini, N A A Zwaneveld, D Gigmes, D Bertin, L Nony, and L Porte, ChemPhysChem 10, 1032 (2009).

    Article  Google Scholar 

  9. S Weigelt, C Busse, L Petersen, E Rauls, B Hammer, K V Gothelf, F Besenbacher, and T R Linderoth, Nature Materials 5, 112 (2006).

    Article  Google Scholar 

  10. S F Alvarado, W Rieß, M Jandke, and P Strohriegel, Org. Electronics 2, 75 (2001).

    Article  Google Scholar 

  11. C H Schmitz, J Ikonomov, and M Sokolowski, J. Phys. Chem. C 113, 11984 (2009).

    Article  Google Scholar 

  12. Y Okawa and M Aono, Nature 409, 683 (2001).

    Article  Google Scholar 

  13. O Endo, H Ootsubo, N Toda, M Suhara, H Ozaki, and Y Mazaki, J. Am. Chem. Soc. 126, 9894 (2004).

    Article  Google Scholar 

  14. L Grill, M Dyer, L Lafferentz, M Persson, M V Peters, and S Hecht, Nature Nanotech. 2, 687 (2007).

    Article  Google Scholar 

  15. S Weigelt, C Busse, C Bombis, M M Knudsen, K V Gothelf, T Strunskus, C Wöll, M Dahlbom, B Hammer, E Laegsgaard, F Besenbacher, and T R Linderoth, Angew. Chem. Int. Ed. 46, 9227 (2007).

    Article  Google Scholar 

  16. M Matena, T Riehm, M Stöhr, T A Jung, and L H Gade, Angew. Chem. Int. Ed. 47, 2414 (2008).

    Article  Google Scholar 

  17. M In’t Veld, P Iavicoli, S Haq, D B Amabilino, and R Raval, Chem. Commun., 1536 (2008).

    Google Scholar 

  18. S Weigelt, C Busse, C Bombis, M M Knudsen, K V Gothelf, E Lægsgaard, F Besenbacher, and T R Linderoth, Angew. Chem. Int. Ed. 47, 4406 (2008).

    Article  Google Scholar 

  19. N A A Zwaneveld, R Pawlak, M Abel, D Catalin, D Gigmes, D Bertin, and L Porte, J. Am. Chem. Soc. 130, 6678 (2008).

    Article  Google Scholar 

  20. M Treier, N V Richardson, and R Fasel, J. Am. Chem. Soc. 130, 14054 (2008).

    Article  Google Scholar 

  21. M Treier, R Fasel, N R Champness, S Argent, and N V Richardson, Phys. Chem. Chem. Phys. 11, 1209 (2009).

    Article  Google Scholar 

  22. J A Lipton-Duffin, O Ivasenko, D. F Perepichka, and F Rosei, Small 5, 592 (2009).

    Article  Google Scholar 

  23. M Matena, M Stöhr, T Riehm, J Björk, S Martens, M S Dyer, M Persson, J Lobo-Checa, K Müller, M Enache, H Wadepohl, J Zegenhagen, T A Jung, and L H Gade, Chem. Eur. J. 16, 2079 (2010).

    Article  Google Scholar 

  24. S Blankenburg, E Rauls, and W G Schmidt, J. Phys. Chem. Lett. 1, 3266 (2010).

    Article  Google Scholar 

  25. J Björk, M Matena, M S Dyer, M Enache, J Lobo-Checa, L H Gade, T A Jung, M Stöhr, and M Persson, Phys. Chem. Chem. Phys. 12, 8815 (2010).

    Article  Google Scholar 

  26. G Kresse and J Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. F London, Z. Phys. Chem. Abt. B 11, 222 (1930).

    Google Scholar 

  28. F Ortmann, F Bechstedt, and W G Schmidt, Phys. Rev. B 73, 205101 (2006).

    Article  Google Scholar 

  29. P E Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  30. G Kresse and D Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  31. E Rauls, S Blankenburg, and W G Schmidt, Phys. Rev. B 81, 125401 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G. et al. (2012). Copper Substrate Catalyzes Tetraazaperopyrene Polymerization. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_4

Download citation

Publish with us

Policies and ethics