Skip to main content

Molecular Modeling of Hydrogen Bonding Fluids: Phase Behavior of Industrial Fluids

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

Six new rigid models for Hydrogen chloride, Phosgene, Toluene, Benzene, Chlorobenzene and Ortho-Dichlorobenzene, that are based on quantum chemical calculations, are presented. Only the parameters of the dispersive and repulsive interactions are fitted to macroscopic thermodynamic properties to achieve an optimal agreement with experimental vapor-liquid equilibrium data.

The influence of the intramolecular degrees of freedom is investigated for ammonia. The strong variation of the molecular geometry between the liquid and vapor state leads to a significant variation of the vapor pressure and saturated liquid density.

The execution performance of the molecular simulation code ms2 is compared regarding different computing architectures and compilers for a typical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alani, G. H.; Kudchadker, A. P.; Zwolinski, B. J. Chem. Rev. 1968, 68, 659.

    Article  Google Scholar 

  2. Ambrose, D. Vapor-liquid critical properties; National Physical Laboratory Report Chem 107, Middlesex, 1980.

    Google Scholar 

  3. Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquids; Oxford University Press: Oxford, 1987.

    Google Scholar 

  4. Ambrose, D.; Tsonopoulos, C. J. Chem. Eng. Data 1995, 40, 547.

    Article  Google Scholar 

  5. Berthelot, D. Cr. Hebd. Acad. Sci. 1898, 126, 1703.

    Google Scholar 

  6. Bourasseau, E.; Haboudou, M.; Boutin, A.; Fuchs, A. H.; Ungerer, P. J. Chem. Phys. 2003, 118, 3020.

    Article  Google Scholar 

  7. Bunger, W. B.; Riddick, J. A. Organic Solvents: Physical Properties and Methods of Purification; 3rd ed., Wiley Online Library: New York, 1970.

    Google Scholar 

  8. Deublein, S.; Eckl, B.; Stoll, J.; Lishchuk, S.; Guevara-Carrion, G.; Glass, C. W.; Merker, T.; Bernreuther, M.; Hasse, H.; Vrabec, J. Comput. Phys. Commun. 2011, in press, doi:10.1016/j.cpc.2011.04.026, http://www.ms-2.de/.

  9. Danner, R. P.; Tarakad, R. R. AIChE J. 1977, 23, 685.

    Article  Google Scholar 

  10. Engin, C.; Merker, T.; Hasse, H.; Vrabec, J. Mol. Phys. 2011, 109, 619.

    Article  Google Scholar 

  11. Eckl, B.; Vrabec, J.; Hasse, H. J. Phys. Chem. B 2008, 112, 12710.

    Article  Google Scholar 

  12. Eckl, B.; Vrabec, J.; Hasse, H. Mol. Phys. 2008, 106, 1039.

    Article  Google Scholar 

  13. Gray, C. G.; Gubbins, K. E. Theory of Molecular Fluids. 1. Fundamentals; Clarendon Press: Oxford, 1984.

    Google Scholar 

  14. Guevara-Carrion, G.; Nieto-Draghi, C.; Vrabec, J.; Hasse, H. J. Phys. Chem. B 2008, 112, 16664.

    Article  Google Scholar 

  15. Huang, Y.-L.; Heilig, M.; Hasse, H.; Vrabec, J. AIChE J. 2011, 57, 1043.

    Article  Google Scholar 

  16. Jones, J. E. Proc. R. Soc. A 1924, 106, 441.

    Article  Google Scholar 

  17. Jones, J. E. Proc. R. Soc. A 1924, 106, 463.

    Article  Google Scholar 

  18. Lorentz, H. A. Ann. Phys. 1881, 12, 127.

    Article  MATH  MathSciNet  Google Scholar 

  19. Lotfi, A.; Vrabec, J.; Fischer, J. Mol. Phys. 1992, 76, 1319.

    Article  Google Scholar 

  20. Mathews, J. F. Chem. Rev. 1972, 72, 71.

    Article  Google Scholar 

  21. National Institute of Standards and Technology NIST Chemistry Webbook 2010; http://webbook.nist.gov/.

  22. Nunes Da Ponte, M.; Staveley, L. A. K. J. Chem. Thermodyn. 1981, 13, 179.

    Article  Google Scholar 

  23. Polt, A.; Platzer, B.; Maurer, G. Chem. Tech. Leipzig 1992, 44, 216.

    Google Scholar 

  24. Prausnitz, J. M. Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall, Inc.: Englewood Cliffs: New Jersey, 1969.

    Google Scholar 

  25. Rowley, R. L.; Wilding, W. V.; Oscarson, J. L.; Yang, Y.; Zundel, N. A.; Daubert, T. E.; Danner, R. P. DIPPR Data Compilation of Pure Compound Properties. Design Institute for Physical Properties; AIChE: New York, 2006.

    Google Scholar 

  26. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Shujun, S.; Windus, T. L.; Dupuis, M.; Montgomery, A. M. J. Comput. Chem 1993, 14, 1347.

    Article  Google Scholar 

  27. Sandler, S. I.; Castier, M. Pure Appl. Chem. 2007, 79, 1345.

    Article  Google Scholar 

  28. Shi, W.; Maginn, E. J. AIChE J. 2009, 55, 2414.

    Article  Google Scholar 

  29. Schnabel, T.; Srivastava, A.; Vrabec, J.; Hasse, H. J. Phys. Chem. B 2007, 111, 9871.

    Article  Google Scholar 

  30. Stoll, J. Molecular Models for the Prediction of Thermophysical Properties of Pure Fluids and Mixtures; Fortschritt-Berichte VDI, Reihe 3, Vol. 836, VDI-Verlag: Düsseldorf, 2005.

    Google Scholar 

  31. Tsonopoulos, C. AIChE J. 1978, 24, 1112.

    Article  Google Scholar 

  32. Ungerer, P.; Beauvais, C.; Delhommelle, J.; Boutin, A.; Rousseau, B.; Fuchs, A. H. J. Chem. Phys. 2000, 112, 5499.

    Article  Google Scholar 

  33. Vrabec, J.; Hasse, H. Mol. Phys. 2002, 100, 3375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadran Vrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckelsbach, S. et al. (2012). Molecular Modeling of Hydrogen Bonding Fluids: Phase Behavior of Industrial Fluids. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_41

Download citation

Publish with us

Policies and ethics