Skip to main content

Linear Time Heuristics for Topographic Mapping of Dissimilarity Data

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2011 (IDEAL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6936))

  • 1770 Accesses

Abstract

Topographic mapping offers an intuitive interface to inspect large quantities of electronic data. Recently, it has been extended to data described by general dissimilarities rather than Euclidean vectors. Unlike its Euclidean counterpart, the technique has quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, it is infeasible already for medium sized data sets. We introduce two approximation techniques which speed up the complexity to linear time algorithms: the Nyström approximation and patch processing, respectively. We evaluate the techniques on three examples from the biomedical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alex, N., Hasenfuss, A., Hammer, B.: Patch clustering for massive data sets. Neurocomputing 72(7-9), 1455–1469 (2009)

    Article  Google Scholar 

  2. Barbuddhe, S.B., Maier, T., Schwarz, G., Kostrzewa, M., Hof, H., Domann, E., Chakraborty, T., Hain, T.: Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology 74(17), 5402–5407 (2008)

    Article  Google Scholar 

  3. Bishop, C., Svensen, M., Williams, C.: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)

    Article  MATH  Google Scholar 

  4. Boulet, R., Jouve, B., Rossi, F., Villa-Vialaneix, N.: Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257–1273 (2008)

    Article  Google Scholar 

  5. Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)

    Article  MATH  Google Scholar 

  6. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A.: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003)

    Article  Google Scholar 

  7. Gisbrecht, A., Mokbel, B., Hammer, B.: The Nystrom approximation for relational generative topographic mappings. In: NIPS Workshop on Challenges of Data Visualization (2010)

    Google Scholar 

  8. Gisbrecht, A., Mokbel, B., Hammer, B.: Relational Generative Topographic Mapping. Neurocomputing 74, 1359–1371 (2011)

    Article  Google Scholar 

  9. Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139–155 (1999)

    Article  Google Scholar 

  10. Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)

    Article  Google Scholar 

  12. Kohonen, T. (ed.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)

    MATH  Google Scholar 

  13. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945–952 (2002)

    Article  Google Scholar 

  14. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)

    Article  Google Scholar 

  15. Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable MALDI-TOF ms–based microorganism identification. Nature Methods 3 (2006)

    Google Scholar 

  16. Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211–1230 (2004)

    Article  MATH  Google Scholar 

  17. Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13, pp. 682–688 (2001)

    Google Scholar 

  18. Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks 19(6-7), 780–784 (2006)

    Article  MATH  Google Scholar 

  19. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science, 227, 1435–1441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gisbrecht, A., Schleif, FM., Zhu, X., Hammer, B. (2011). Linear Time Heuristics for Topographic Mapping of Dissimilarity Data. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics