Skip to main content

Multiobjective Optimization of Indexes Obtained by Clustering for Feature Selection Methods Evaluation in Genes Expression Microarrays

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2011 (IDEAL 2011)

Abstract

The selection of relevant genes in microarray is an important task, since that in a single experiment expressions of thousands of genes are extracted. One way to evaluate feature selection methods in a dataset is by clustering the instances that have similar behaviors. The aim of this paper is to use a set of indexes that measure the quality of a clustering and, through the multiobjective optimization of this set, to show how it is possible to find the best feature selection methods in genes expression datasets obtained by microarray technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Haeseleer, P.: How Does Gene Expression Clustering Work?, vol. 23(12), pp. 1499–1501 (2005)

    Google Scholar 

  2. Dy, J.: Unsupervised Feature Selection. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 19–39. Chapman & Hall/CRC (2008)

    Google Scholar 

  3. Handl, J., Knowles, J.: An Evolutionary Approach to Multiobjective Clustering. IEEE/ACM Transactions on Evolutionary Computation 11(1), 56–76 (2007)

    Article  Google Scholar 

  4. Yu, L., Liu, H.: Redundancy Based Feature Selection for Microarray Data. In: 10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2004)

    Google Scholar 

  5. Azofra, A.A., Sanchez, J.M.B., Peña, J.L.C.: C-FOCUS: A continuous Extension of FOCUS. In: Advances in Soft Computing - Engineering, Design and Manufacturing, pp. 225–232 (2003)

    Google Scholar 

  6. Dash, M., Liu, H., Yao, J.: Dimensionality Reduction of Unsupervised Data. In: 9th International Conference on Tools with Artificial Intelligence (ICTAI 1997), p. 532 (1997)

    Google Scholar 

  7. Kononenko, I., Sikonja, M.R.: Non-Myopic Feature Quality Evaluation with (R)ReliefF. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 169–191. Chapman & Hall/CRC (2008)

    Google Scholar 

  8. Hall, M.: Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. In: 17th International Conference on Machine Learning (2000)

    Google Scholar 

  9. Berkhin, P.: Survey of clustering data mining techniques. In: Accrue Software Technical Report, USA (2003)

    Google Scholar 

  10. Faceli, K., Caravalho, A., Souto, M.: Validação de Algoritmos de Agrupamento. ICMC techinical reports (2005)

    Google Scholar 

  11. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16(3) (2005)

    Google Scholar 

  12. Bolshakova, N., Azuaje, F.: Estimating the Number of Clusters in DNA Microarray Data. Methods Inf. Med. 45(2), 153–157 (2006)

    Google Scholar 

  13. Suresh, K., Kundu, D., Ghosh, S., Das, S.: Data Clustering Using Multi-objective Differential Evolution Algorithm. Fundamenta Informaticae 21, 1001–1024 (2009)

    MathSciNet  Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  15. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Computational Biology and Chemistry, vol. 32, pp. 29–38. Elsevier, Amsterdam (2008)

    Google Scholar 

  16. Carvalho, A.B., Pozo, A.T.R.: Otimização por Nuvem de Partículas Multiobjetivo na Aprendizagem Indutiva de Regras: Extensões e Aplicações. Universidade Federal do Paraná, Master thesis (2009)

    Google Scholar 

  17. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi- objective particle swarm optimization (MOPSO). In: IEEE Swarm Intelligence Symposium, pp. 26–33 (2003)

    Google Scholar 

  18. Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  19. Borges, H.B.: Redução de Dimensionalidade em Bases de Dados de Expressão Gênica. Pontifíca Universidade Católica, Master thesis (2006)

    Google Scholar 

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcia, R., Paraiso, E.C., Nievola, J.C. (2011). Multiobjective Optimization of Indexes Obtained by Clustering for Feature Selection Methods Evaluation in Genes Expression Microarrays. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics