Skip to main content

Genetic Algorithms to Simplify Prognosis of Endocarditis

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2011 (IDEAL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6936))

  • 1845 Accesses

Abstract

This ongoing interdisciplinary research is based on the application of genetic algorithms to simplify the process of predicting the mortality of a critical illness called endocarditis. The goal is to determine the most relevant features (symptoms) of patients (samples) observed by doctors to predict the possible mortality once the patient is in treatment of bacterial endocarditis. This can help doctors to prognose the illness in early stages; by helping them to identify in advance possible solutions in order to aid the patient recover faster. The results obtained using a real data set, show that using only the features selected by employing a genetic algorithm from each patient’s case can predict with a quite high accuracy the most probable evolution of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, H., Yu, L.: Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Educational Activities Department 17(4), 491–502 (2005)

    MathSciNet  Google Scholar 

  2. Lorena, A.C., Ponce, A.C.: Evolutionary design of code-matrices for multiclass problems. In: Soft Computing for Knowledge Discovery and Data Mining, pp. 153–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Berlanga, F.J., Rivera, A.J., Jesus, M.J., Herrera, F.: GP-COACH: Genetic Programming-based learning of Compact and Accurate fuzzy rule-based classification systems for High-dimensional problems. Information Science 180(8), 1183–1200 (2010)

    Article  Google Scholar 

  4. Chang, C.-D., Wang, C.-C., Jiang, B.C.: Using data mining techniques for multi-diseases prediction modeling of hypertension and hyperlipidemia by common risk factors. Expert Systems with Applications 38(5), 5507–5513 (2011)

    Article  Google Scholar 

  5. Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Information Sciences, Special Issue on Intelligent Distributed Information Systems 180(10), 2029–2043 (2010)

    Google Scholar 

  6. Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A Soft Computing Based Method for Detecting Lifetime Building Thermal Insulation Failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)

    Google Scholar 

  7. Plicht, B., Erbel, R.: Diagnosis and treatment of infective endocarditis. Current ESC guidelines. HERZ 35(8), 542–548 (2010)

    Article  Google Scholar 

  8. Plicht, B., Janosi, R.A., Buck, T., Erbel, R.: Infective endocarditis as cardiovascular emergency. HERZ 51(8), 987–994 (2010)

    Google Scholar 

  9. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)

    Google Scholar 

  10. Goldberg, D.E.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  11. Niknam, T., Fard, E.T., Pourjafarian, N., Rousta, A.: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. In: Engineering Applications of Artificial Intelligence, vol. 24, pp. 306–317. Pergamon-Elsevier Science Ltd. (2011)

    Google Scholar 

  12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  13. Vapnik, V.: Statistical Learning Theory. Springer, New York (1998)

    MATH  Google Scholar 

  14. Burges, C.J.C.: A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  15. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  16. Rish, I.: An empirical study of the naive Bayes classifier. In: Proceedings of IJCAI-2001 Workshop on Empirical Methods in AI In International Joint Conference on Artificial Intelligence, pp. 41–46 (2001)

    Google Scholar 

  17. Bayes, T.: An Essay towards solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London 53(2), 370–418 (1763)

    Google Scholar 

  18. Larrañaga, P., Inza, I., Martinez, A.P.: Bayesian classifiers based on kernel density estimation. International Journal of Approximate Reasoning 50(2), 341–362 (2009)

    Article  MATH  Google Scholar 

  19. Benito, N., Miro, J.M., Lazzari, E., Cabell, C.H., Rio, A., Altclas, J., Commerford, P., Delahaye, F., Dragulescu, S., Giamarellou, H., Habib, G., Kamarulzaman, A., Sampath, A., Nacinovich, F.M., Suter, F., Tribouilloy, C., Venugopal, K., Moreno, A., Fowler, V.G.: The ICE-PCS (International Collaboration on Endocarditis Prospective Cohort Study) Investigators. Health Care Associated Native Valve Endocarditis: Importance of Non-nosocomial Acquisition. Annals of Internal Medicine 150, 586–594 (2009)

    Article  Google Scholar 

  20. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. Artificial Intelligence Communications-AICom 7(1), 39–59 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curiel, L., Baruque, B., Dueñas, C., Corchado, E., Pérez-Tárrago, C. (2011). Genetic Algorithms to Simplify Prognosis of Endocarditis. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics