Skip to main content

Improving Search Ability of Genetic Learning Process for High-Dimensional Fuzzy Classification Problems

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7002))

  • 2336 Accesses

Abstract

In this paper, we improve efficiency of the genetic search process for generating fuzzy classification rules from high-dimensional problems by using fitness sharing method. First, we define the similarity level of different fuzzy rules. It represents the structural difference of search space in the genetic population. Next, we use sharing method to balance the fitness of different rules and prevent the search process falling into local regions. Then, we combine the sharing method into a hybrid learning approach (i.e., the hybridization of Michigan and Pittsburgh) to obtain the appropriate combination of different rules. Finally, we examine the search ability of different genetic machine learning approaches on a suite of test problems and some well-known classification problems. Experimental results show that the fitness sharing method has higher search ability and it is able to obtained accurate fuzzy classification rules set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends. Fuzzy Set. Syst. 141, 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Herrera, F.: Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evol. Intel. 1, 27–46 (2008)

    Article  Google Scholar 

  3. Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of Fuzzy GBML Approaches for Pattern Classification Problems. IEEE Trans. Syst. Man. Cybern. B. 35, 359–365 (2005)

    Article  Google Scholar 

  4. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier Systems and Genetic Algorithms. Artif. Intell. 40, 235–282 (1989)

    Article  Google Scholar 

  5. Venturini, G.: SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attribute based Concepts. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 280–296. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Horn, J., Goldberg, D.E.: Natural Niching for Evolving Cooperative Classifiers. In: 1st Annual Conference on Genetic Programming, pp. 553–564. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. Ph.D. dissertation, Univ. of Illinois, Urbana-Champaign (1995)

    Google Scholar 

  8. UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man-Mach. Studies 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  10. Baker, J.E.: Adaptive Selection Methods for Genetic Algorithms. In: 1st International Conference on Genetic Algorithms, pp. 101–111. Lawrence Erlbaum Associates, Hillsdale (1985)

    Google Scholar 

  11. Zadeh, L.A.: Concept of a Linguistic Variable and Its Application to Approximate Reasoning-1, 2, and 3. Inform. Sci. 8, 8, 9, 199–249, 301–357, 43–80 (1975/1976)

    Google Scholar 

  12. Marin-Blazquez, J.G., Shen, Q.: From Approximative to Descriptive Fuzzy Classifiers. IEEE Trans. Fuzzy Syst. 10, 484–497 (2002)

    Article  Google Scholar 

  13. Whitney, D., Rana, S., Dzubera, J., Mathias, K.E.: Evaluating Evolutionary Algorithms. Artif. Intell. 85, 245–276 (1996)

    Article  Google Scholar 

  14. De Jong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. thesis. Univ. of Michigan, Ann. Arbor (1975)

    Google Scholar 

  15. A Library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  16. Roubos, J.A., Setnes, M.: Compact and Transparent Fuzzy Models and Classifiers through Iterative Complexity Reduction. IEEE Trans. Fuzzy Syst. 9, 516–524 (2001)

    Article  Google Scholar 

  17. Herrera, F., Lozano, M., Verdegay, J.L.: A Learning Process for Fuzzy Control Rules using Genetic Algorithms. Fuzzy Set. Syst. 100, 143–158 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, JD., Zhang, XJ., Gao, Y., Zhou, H., Cui, J. (2011). Improving Search Ability of Genetic Learning Process for High-Dimensional Fuzzy Classification Problems. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23881-9_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23881-9_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23880-2

  • Online ISBN: 978-3-642-23881-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics