Skip to main content

Blind Source Separation Based on Power Spectral Density

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7003))

Abstract

In this paper, a novel blind separation approach using power spectral density(PSD) is presented. The power spectrum itself is the Fourier transform of the auto-correlation function. Auto-correlation function represents the relationship of long and short-term correlation within the signal itself. This paper using power spectral density and cross power spectral density separate blind mixed source signals. In practice, non-stationary signals always have different PSD. The method is suitable for dealing with non-stationary signal. And simulation results have shown that the method is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nguyen, L.-T., Belouchrani, A., Abed-Meraim, K., Boashash, B.: Separating More Sources then Sensors Using Time-Frequency Distributions. In: Sixth International Signal Processing and its Applications, vol. 2, pp. 583–686 (2001)

    Google Scholar 

  2. Belouchrani, A., Amin, M.G.: Blind source separation based on time-frequency signal representations. IEEE Trans. Spch. Aud. Proc. 46, 2888–2897 (1998)

    Article  Google Scholar 

  3. Grinsted1, A., Moore1, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics. European Geosciences Union, 561–566 (2004)

    Google Scholar 

  4. Ding, S.: A power iteration algorithm for ica based on diagonalizations of non-linearized covariance matrix. In: International Conference on Innovative Computing, Information and Control, Beijing (2006)

    Google Scholar 

  5. Gikibar, A., Fevotte, C., Doncarli, C., Zazula, D.: Single autoterms selection for blind source separation in time frequency plane. In: Proc. EUSIPCO 2002, Toulouse, France, September 3-6 (2002)

    Google Scholar 

  6. Barry, D., Fitzgerald, D., Coyle, E., Lawlor, B.: Single Channel Source Separation using Short-time Independent Component Analysis. AES Audio Engineer Society (October 08, 2007)

    Google Scholar 

  7. Shan, Z.: Aviyente Source Separation in the Time-Frequency Domain by Maximizing an Information-Theoretic Criterion. In: 2006 IEEE International Conference on Electro/Information Technology, May 7-10, pp. 43–48 (2006)

    Google Scholar 

  8. Reju, V.G., Koh, S.N., Soon, I.Y.: Soon Underdetermined Convolutive Blind Source Separation via Time-Frequency Masking. IEEE Transactions on Audio, Speech, and Language Processing. , 101–116 (2010)

    Google Scholar 

  9. Shan, Z., Swary, J., Aviyente, S.: Underdetermined Source Separation in the Time-Frequency Domain. In: International Conference on Acoustics, Speech and Signal Processing, pp. 945–948 (2007)

    Google Scholar 

  10. Davenport, W.B., Root, W.L.: An Introduction to the Theory of Random Signals and Noise. IEEE Press, New York (1987) ISBN 0-87942-235-1

    Book  MATH  Google Scholar 

  11. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, Chichester, ISBN 0471128392

    Google Scholar 

  12. http://en.wikipedia.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Zhao, Y. (2011). Blind Source Separation Based on Power Spectral Density. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23887-1_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23886-4

  • Online ISBN: 978-3-642-23887-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics