Skip to main content

Resolve of Multicomponent Mixtures Using Voltammetry and a Hybrid Artificial Neural Network Method

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7004))

  • 2258 Accesses

Abstract

This paper suggests a novel method named DOSC-DF-GRNN, which is based on generalized regression neural network (GRNN) combined with direct orthogonal signal correction (DOSC) and data fusion (DF) to enhance the ability to extract characteristic information and improve the quality of the regression for the simultaneous simultaneous diffrential pulse voltammetric determination of Ni(II), Zn(II) and Co(II). In this case, the relative standard errors of prediction (RSEP) for total elements with DOSC-DF-GRNN, DOSC-GRNN, DF-GRNN, GRNN and PLS were 9.70, 10.8, 11.5, 12.2 and 12.3 %, respectively. Experimental results showed the DOSC-DF-GRNN method was successful for diffrential pulse voltammetric determination even when there were severe overlaps of voltammograms existed and was the best among the five methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marini, F., Magri, A.L., Bucci, R., Magri, A.D.: Use of different artificial neural networks to resolve binary blends of monocultivar Italian olive oils. Anal. Chim. Acta 599(2), 232–240 (2007)

    Article  Google Scholar 

  2. Verikas, A., Bacauskien, M.: Using artificial neural networks for process and system modeling. Chemomotr. Intell. Lab. Syst. 67, 187–191 (2003)

    Article  Google Scholar 

  3. Choi, S.W., Lee, D., Park, J.H., Lee, I.B.: Nonlinear regression using RBFN with linear submodels. Chemometr, Intell. Lab. Syst. 65, 191–208 (2003)

    Article  Google Scholar 

  4. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)

    Article  Google Scholar 

  5. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural Network 2(6), 568–576 (1991)

    Article  Google Scholar 

  6. Wold, S., Antti, H., Lindgren, F., Ohman, J.: Orthogonal signal correction of near-infrared spectra. Chemometr. Intell. Lab. Syst. 44, 175–185 (1998)

    Article  Google Scholar 

  7. Westerhuis, J.A., de Jong, S., Smilde, A.G.: Direct orthogonal signal correction. Chemometr. Intell. Lab. Syst. 56, 13–25 (2001)

    Article  Google Scholar 

  8. Daubechies, I.: Orthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MATH  Google Scholar 

  9. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38(2), 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ren, S.X., Gao, L.: Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares. Talanta 50(6), 1163–1173 (2000)

    Article  Google Scholar 

  11. Gao, L., Ren, S.X.: Combining direct orthogonal signal correction and wavelet packet transform with partial least squares to analyze overlapping voltammograms of nitroaniline isomers. Electrochimica Acta 54, 3161–3168 (2009)

    Article  Google Scholar 

  12. Ruhm, H.: Sensor fusion and data fusion-mapping and reconstruction. Measurement 40, 145–157 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, S., Gao, L. (2011). Resolve of Multicomponent Mixtures Using Voltammetry and a Hybrid Artificial Neural Network Method. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23896-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23896-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23895-6

  • Online ISBN: 978-3-642-23896-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics