Abstract
We introduce a new hybrid recommendation method that is based on four data processing steps: 1) preprocessing of content features describing items, 2) preliminary dimensionality reduction applied to user/item vectors expressed in content features space (performed by means of SVD), 3) augmentation of normalized low-dimensional preliminary user/item vectors according to collaborative filtering data and leading to the reconstruction of user/item vectors (based on final item/user vectors and the original input matrix), and 4) the estimation of missing entries in the user-item ratings matrix. In the experiments presented in the paper, we focus on the most challenging case of extreme collaborative data sparsity. We show that a low-dimensional space is suitable for recommendation generation, despite collaborative data sparsity disqualifying the use of methods widely referenced in the relevant literature. In particular, we demonstrate that the proposed low-dimensional feature augmentation method is more effective than the well-known weighted feature combination method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)
Basu, C., Hirsh, H., Cohen, W.: Recommendation as classification: Using social and content-based information in recommendation. In: Fifteenth National Conference on Artificial Intelligence, pp. 714-720 (1998)
Berry, M., Dumais, S., O’Brien, G.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37, 573–595 (1995)
Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)
Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)
Campos, L., Fernandez-Luna, J., Huete, J., Rueda-Morales, M.: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. Int. J. Approx. Reasoning 51, 785–799 (2010)
Claypool, M., Gokhale, A., Miranda, T.: Combining content-based and collaborative filters in an online newspaper. In: ACM SIGIR Workshop on Recommender Systems-Implementation and Evaluation (1999)
Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys 2010), New York, NY, USA, pp. 39–46 (2010)
Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems. In: RecSys 2009: Proceedings of the third ACM Conference on Recommender Systems, pp. 117-124 (2009)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Information Systems 22(1), 5–53 (2004)
Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Melville, P., Mooney, R., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Dechter, R., Kearns, M., Sutton, R. (eds.) Eighteenth National Conference on Artificial Intelligence, Menlo Park, CA, USA. American Association for Artificial Intelligence, pp. 187–192 (2002)
Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)
Papagelis, M., Plexousakis, D., Kutsuras, T.: Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 224–239. Springer, Heidelberg (2005)
Peralta, V.: Extraction and Integration of MovieLens and IMDb Data. Laboratoire PRiSM, Technical Report. Universit de Versailles, Francia (2007)
Pilaszy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable than metadata. In: Proceedings of the Third ACM Conference on Recommender Systems (RecSys 2009), New York, NY, USA, pp. 93–100 (2009)
Rashid, M., Lam, S., Karypis, G., Riedl, J.: ClustKNN: A Highly Scalable Hybrid Model&MemoryBased CF Algorithm. In: Computer Science and Engineering, University of Minnesota, Minneapolis (2006)
Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton (1979)
Salter, J., Antonopoulos, N.: CinemaScreen Recommender Agent: Combining Collaborative and Content-Based Filtering. IEEE Intelligent Systems 21, 35–41 (2006)
Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Application of dimensionality reduction in recommender system - a case study. In: ACM WebKDD 2000 Web Mining for E-Commerce Workshop, Boston, MA, USA (2000)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce (EC 2000), pp. 158–167. ACM, New York (2000)
Schafer, J.B., Konstan, J.A., Riedl, J.: E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)
Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 253–260 (2002)
Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Feature-Weighted User Model for Recommender Systems. In: Conati, C., Mccoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 97–106. Springer, Heidelberg (2007)
Symeonidis, P., Nanopoulos, A., Papadopoulos, A.N., Manolopoulos, Y.: Collaborative recommender systems: Combining efectiveness and eficiency. Expert Syst. Appl. 34, 2995–3013 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szwabe, A., Janasiewicz, T., Ciesielczyk, M. (2011). Hybrid Recommendation Based on Low-Dimensional Augmentation of Combined Feature Profiles. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science(), vol 6923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23938-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-23938-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23937-3
Online ISBN: 978-3-642-23938-0
eBook Packages: Computer ScienceComputer Science (R0)