Skip to main content

Following the Leader – Particle Dynamics in Constricted PSO

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6923))

Included in the following conference series:

  • 840 Accesses

Abstract

We consider particle swarm optimization algorithm with a constriction coefficient and investigate particle dynamics without stagnation assumptions. We propose differential models of a particle following the swarm leader, while global best and personal best position are changing. We introduce three qualitative kinds of particles – a leader, a lazy follower and a sedulous follower with equations allowing quantitative investigation of parameter influence. This analysis constitutes an attempt to understand PSO dynamics and the choice of swarm parameters and inspires parameters adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  2. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  3. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85, 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Clerc M.: Particle Swarm Optimization, ISTE Ltd (2006)

    Google Scholar 

  5. Engelbrect, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley & Sons Ltd., Chichester (2005)

    Google Scholar 

  6. Kadirkamanathan, V., Selvarajah, K., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evolutionary Computation 10(3), 245–255 (2006)

    Article  Google Scholar 

  7. Wakasa, Y., Tanaka, K., Nishimura, Y.: Control-Theoretic Analysis of Exploitation and Exploration of the PSO Algorithm. In: 2010 IEEE International Symposium on Computer-Aided Control System Design, Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 8-10, pp. 1807–1812 (2010)

    Google Scholar 

  8. Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens, Dept. Comput. Sci., Univ. Essex, Colchester, U.K., Tech. Rep. CSM-460 (2006)

    Google Scholar 

  9. Fernandez-Martinez, J.L., Garcia-Gonzalo, E.: Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models. IEEE Trans. Evolutionary Computation (to appear, 2011), doi:10.1109/TEVC.2010.2053935

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kabziński, J. (2011). Following the Leader – Particle Dynamics in Constricted PSO. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science(), vol 6923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23938-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23938-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23937-3

  • Online ISBN: 978-3-642-23938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics