Abstract
We consider particle swarm optimization algorithm with a constriction coefficient and investigate particle dynamics without stagnation assumptions. We propose differential models of a particle following the swarm leader, while global best and personal best position are changing. We introduce three qualitative kinds of particles – a leader, a lazy follower and a sedulous follower with equations allowing quantitative investigation of parameter influence. This analysis constitutes an attempt to understand PSO dynamics and the choice of swarm parameters and inspires parameters adaptation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. 1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolutionary Computation 6(1), 58–73 (2002)
Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85, 317–325 (2003)
Clerc M.: Particle Swarm Optimization, ISTE Ltd (2006)
Engelbrect, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley & Sons Ltd., Chichester (2005)
Kadirkamanathan, V., Selvarajah, K., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evolutionary Computation 10(3), 245–255 (2006)
Wakasa, Y., Tanaka, K., Nishimura, Y.: Control-Theoretic Analysis of Exploitation and Exploration of the PSO Algorithm. In: 2010 IEEE International Symposium on Computer-Aided Control System Design, Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 8-10, pp. 1807–1812 (2010)
Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens, Dept. Comput. Sci., Univ. Essex, Colchester, U.K., Tech. Rep. CSM-460 (2006)
Fernandez-Martinez, J.L., Garcia-Gonzalo, E.: Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models. IEEE Trans. Evolutionary Computation (to appear, 2011), doi:10.1109/TEVC.2010.2053935
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kabziński, J. (2011). Following the Leader – Particle Dynamics in Constricted PSO. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science(), vol 6923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23938-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-23938-0_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23937-3
Online ISBN: 978-3-642-23938-0
eBook Packages: Computer ScienceComputer Science (R0)