Abstract
Thresholding strategies in automated text categorization are an under-explored area of research. Indeed, thresholding strategies are often considered a post-processing step of minor importance, the underlying assumptions being that they do not make a difference in the performance of a classifier and that finding the optimal thresholding strategy for any given classifier is trivial. Neither these assumptions are true. In this paper, we concentrate on progressive filtering, a hierarchical text categorization technique that relies on a local-classifier-per-node approach, thus mimicking the underlying taxonomy of categories. The focus of the paper is on assessing TSA, a greedy threshold selection algorithm, against a relaxed brute-force algorithm and the most relevant state-of-the-art algorithms. Experiments, performed on Reuters, confirm the validity of TSA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Addis, A., Armano, G., Vargiu, E.: From a generic multiagent architecture to multiagent information retrieval systems. In: AT2AI-6, Sixth International Workshop, From Agent Theory to Agent Implementation, pp. 3–9 (2008)
Addis, A., Armano, G., Vargiu, E.: Assessing progressive filtering to perform hierarchical text categorization in presence of input imbalance. In: Proceedings of International Conference on Knowledge Discovery and Information Retrieval, KDIR 2010 (2010)
Addis, A., Armano, G., Vargiu, E.: Experimental assessment of a threshold selection algorithm for tuning classifiers in the field of hierarchical text categorization. In: Proceedings of 17th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (2010)
Addis, A., Armano, G., Vargiu, E.: Using the progressive filtering approach to deal with input imbalance in large-scale taxonomies. In: Large-Scale Hierarchical Classification Workshop (2010)
Addis, A., Armano, G., Vargiu, E.: A comparative experimental assessment of a threshold selection algorithm in hierarchical text categorization. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611. Springer, Heidelberg (2011)
Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley Series in Agent Technology. John Wiley and Sons, Chichester (2007)
Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a comprehensive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)
Cost, R.S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)
D’Alessio, S., Murray, K., Schiaffino, R.: The effect of using hierarchical classifiers in text categorization. In: Proceedings of of the 6th International Conference on Recherche Information Assiste par Ordinateur (RIAO), pp. 302–313 (2000)
Dumais, S.T., Chen, H.: Hierarchical classification of Web content. In: Belkin, N.J., Ingwersen, P., Leong, M.K. (eds.) Proceedings of SIGIR 2000, 23rd ACM International Conference on Research and Development in Information Retrieval, pp. 256–263. ACM Press, New York (2000)
Lewis, D.D.: Evaluating and optimizing autonomous text classification systems. In: SIGIR 1995: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 246–254. ACM, New York (1995)
Lewis, D.D., Yang, Y., Rose, T., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)
Ruiz, M.E.: Combining machine learning and hierarchical structures for text categorization. Ph.D. thesis (2001), supervisor-Srinivasan, Padmini
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys (CSUR) 34(1), 1–55 (2002)
Silla, C., Freitas, A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22, 31–72 (2011), http://dx.doi.org/10.1007/s10618-010-0175-9 , 10.1007/s10618-010-0175-9
Sun, A., Lim, E.: Hierarchical text classification and evaluation. In: ICDM 2001: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 521–528. IEEE Computer Society, Washington, DC (2001)
Wu, F., Zhang, J., Honavar, V.: Learning classifiers using hierarchically structured class taxonomies. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 313–320. Springer, Heidelberg (2005)
Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1/2), 69–90 (1999)
Yang, Y.: A study of thresholding strategies for text categorization. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 137–145. ACM, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Addis, A., Armano, G., Vargiu, E. (2011). A Comparative Study of Thresholding Strategies in Progressive Filtering. In: Pirrone, R., Sorbello, F. (eds) AI*IA 2011: Artificial Intelligence Around Man and Beyond. AI*IA 2011. Lecture Notes in Computer Science(), vol 6934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23954-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-23954-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23953-3
Online ISBN: 978-3-642-23954-0
eBook Packages: Computer ScienceComputer Science (R0)