Skip to main content

3D Saliency for Abnormal Motion Selection: The Role of the Depth Map

  • Conference paper
Computer Vision Systems (ICVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6962))

Included in the following conference series:

  • 1247 Accesses

Abstract

This paper deals with the selection of relevant motion within a scene. The proposed method is based on 3D features extraction and their rarity quantification to compute bottom-up saliency maps. We show that the use of 3D motion features namely the motion direction and velocity is able to achieve much better results than the same algorithm using only 2D information. This is especially true in close scenes with small groups of people or moving objects and frontal view. The proposed algorithm uses motion features but it can be easily generalized to other dynamic or static features. It is implemented on a platform for real-time signal analysis called Max/Msp/Jitter. Social signal processing, video games, gesture processing and, in general, higher level scene understanding can benefit from this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mancas, M.: Relative influence of bottom-up and top-down attention. In: Paletta, L., Tsotsos, J.K. (eds.) WAPCV 2008. LNCS, vol. 5395, pp. 212–226. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Dhavale, N., Itti, L.: Saliency-based multifoveated MPEG compression. In: Proceedings of Signal Processing and Its Applications, pp. 229–232 (2003)

    Google Scholar 

  3. Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J.C., Pomplun, M., Simine, E., Zhou, K.: Attenting to visual motion. J. of Computer Vision and Image Understandig (2005)

    Google Scholar 

  4. Parkhurst, D.J., Niebur, E.: Texture contrast attracts overt visual attention in natural scenes. European Journal of Neuroscience 19(3), 783–789 (2004)

    Article  Google Scholar 

  5. Itti, L., Baldi, P.: Bayesian Surprise Attracts Human Attention. Advances in Neural Information Processing Systems 18, 547 (2006)

    Google Scholar 

  6. Le Meur, O., Le Callet, P., Barba, D., Thoreau, D.: A Coherent Computational Approach to Model Bottom-Up Visual Attention. PAMI, 802–817 (2006)

    Google Scholar 

  7. Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic approach. Journal of Vision 9(3), 5 (2009)

    Article  Google Scholar 

  8. Boiman, O., Irani, M.: Detecting Irregularities in Images and in Video. International Journal of Computer Vision 74(1), 17–31 (2007)

    Article  Google Scholar 

  9. Ouerhani, N., Huegli, H.: Computing visual attention from scene depth. In: Proc. of Int’l Conf. on Pattern Recognition, vol. 1 (2000)

    Google Scholar 

  10. Microsoft Kinect sensor, http://www.xbox.com/kinect

  11. Max MSP, http://cycling74.com

  12. FTM library, http://ftm.ircam.fr/index.php/Main_Page

  13. Farnebäck, G.: Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riche, N., Mancas, M., Gosselin, B., Dutoit, T. (2011). 3D Saliency for Abnormal Motion Selection: The Role of the Depth Map. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds) Computer Vision Systems. ICVS 2011. Lecture Notes in Computer Science, vol 6962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23968-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23968-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23967-0

  • Online ISBN: 978-3-642-23968-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics