Skip to main content

Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video

  • Conference paper
Computer Vision Systems (ICVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6962))

Included in the following conference series:

Abstract

We systematically investigate how geometric constraints can be used for efficient sliding-window object detection. Starting with a general characterization of the space of sliding-window locations that correspond to geometrically valid object detections, we derive a general algorithm for incorporating ground plane constraints directly into the detector computation. Our approach is indifferent to the choice of detection algorithm and can be applied in a wide range of scenarios. In particular, it allows to effortlessly combine multiple different detectors and to automatically compute regions-of-interest for each of them. We demonstrate its potential in a fast CUDA implementation of the HOG detector and show that our algorithm enables a factor 2-4 speed improvement on top of all other optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian Detection: A Benchmark. In: CVPR (2009)

    Google Scholar 

  2. Gavrila, D., Munder, S.: Multi-Cue Pedestrian Detection and Tracking from a Moving Vehicle. IJCV 73(1), 41–59 (2007)

    Article  Google Scholar 

  3. Leibe, B., Schindler, K., Van Gool, L.: Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles. PAMI 30(10), 1683–1698 (2008)

    Article  Google Scholar 

  4. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust Multi-Person Tracking from a Mobile Platform. PAMI 31(10), 1831–1846 (2009)

    Article  Google Scholar 

  5. Viola, P., Jones, M.: Robust Real-Time Face Detection. IJCV 57(2) (2004)

    Google Scholar 

  6. Wojek, C., Dorkó, G., Schulz, A., Schiele, B.: Sliding-windows for rapid object class localization: A parallel technique. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 71–81. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Prisacariu, V., Reid, I.: fastHOG – a Real-Time GPU Implementation of HOG. Technical Report 2310/09, Dept. of Eng. Sc., Univ. of Oxford (2009)

    Google Scholar 

  8. Torralba, A., Murphy, K., Freeman, W.: Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection. In: CVPR (2004)

    Google Scholar 

  9. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV (2009)

    Google Scholar 

  10. Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade Object Detection with Deformable Part Models. In: CVPR (2010)

    Google Scholar 

  11. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral Channel Features. In: BMVC (2009)

    Google Scholar 

  12. Dollar, P., Belongie, S., Perona, P.: The Fastest Pedestrian Detector in the West. In: BMVC (2010)

    Google Scholar 

  13. Lampert, C., Blaschko, M., Hofmann, T.: Efficient Subwindow Search: A Branch and Bound Framework for Object Localization. PAMI 31(12), 2129–2142 (2009)

    Article  Google Scholar 

  14. Hoiem, D., Efros, A., Hebert, M.: Putting Objects Into Perspective. In: CVPR (2006)

    Google Scholar 

  15. Geronimo, D., Sappa, A., Ponsa, D., Lopez, A.: 2D-3D-based On-Board Pedestrian Detection System. CVIU 114(5), 583–595 (2010)

    Google Scholar 

  16. Choi, W., Savarese, S.: Multiple target tracking in world coordinate with single, minimally calibrated camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 553–567. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Park, D., Ramanan, D., Fowlkes, C.: Multiresolution models for object detection. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 241–254. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Felzenszwalb, P., McAllester, D., Ramanan, D.: A Discriminatively Trained, Multiscale, Deformable Part Model. In: CVPR (2008)

    Google Scholar 

  19. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR (2005)

    Google Scholar 

  20. Breitenstein, M., Sommerlade, E., Leibe, B., Van Gool, L., Reid, I.: Probabilistic Parameter Selection for Learning Scene Structure from Video. In: BMVC (2008)

    Google Scholar 

  21. Bao, Y., Sun, M., Savarese, S.: Toward Coherent Object Detection And Scene Layout Understanding. In: CVPR (2010)

    Google Scholar 

  22. Sun, M., Bao, Y., Savarese, S.: Object Detection with Geometrical Context Feedback Loop. In: BMVC (2010)

    Google Scholar 

  23. Bombini, L., Cerri, P., Grisleri, P., Scaffardi, S., Zani, P.: An Evaluation of Monocular Image Stabilization Algorithms for Automotive Applications. Intel. Transp. Syst (2006)

    Google Scholar 

  24. Schneiderman, H.: Feature-Centric Evaluation for Efficient Cascaded Object Detection. In: CVPR (2004)

    Google Scholar 

  25. Lehmann, A., Leibe, B., Van Gool, L.: Feature-Centric Efficient Subwindow Search. In: ICCV (2009)

    Google Scholar 

  26. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  27. Everingham, M., et al.: (34 authors): The 2005 PASCAL Visual Object Classes Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 117–176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sudowe, P., Leibe, B. (2011). Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds) Computer Vision Systems. ICVS 2011. Lecture Notes in Computer Science, vol 6962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23968-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23968-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23967-0

  • Online ISBN: 978-3-642-23968-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics