Abstract
Automatic real-time recognition of TV commercials is an essential step for TV broadcast monitoring. It comprises of two basic tasks: rapid detection of known commercials that are stored in a database, and accurate recognition of unknown ones that appear for the first time in TV streaming. In this paper, we present the framework of a TV commercial detection system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albiol, A., Fulla, M.J., Albiol, A., Torres, L.: Detection of TV Commercials. In: International Conference on Acoustics, Speech and Signal Processing, pp. 541–544 (2004)
Angihotri, L., Dimitrov, N., McGee, T., Jeannin, S., Schaffer, D., Nesvadba, J.: Evolvable Visual Commercial Detector. In: Proc. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 79–84 (2003)
Ardizzone, E., et al.: Content-based indexing if image and video database by global and shape features. In: Proc. Of the International Conference on Pattern Recognition (1996)
Chang, C.L.E., Wang, J., Wiederhold, G.: Rime: A replicated image detector for the World Wide Web. In: SPIE Multimedia Storage and Archiving Systems III (1998)
Chang, H.S., Sull, S., Lee, S.U.: Efficient video indexing scheme for content-based retrieval. IEEE Trans. Circuits Syst. Video Technology (1999)
Cheung, S.-C.S., Zakhor, A.: Efficient video similarity measurement and search. In: Proc. of International Conference on Image Processing, British Columbia, Canada, pp. 85–89 (2000)
Duan, L.Y., Wang, J., Zheng, Y., Jin, J.S., Lu, H., Xu, C.: Segmentation, categorization, and identification of commercial clips from TV streams using multimodal analysis. In: ACM Multimedia, pp. 201–210 (2006)
Gauch, J.M., Shivadas, A.: Finding and identifying unknown commercials using repeated video sequence detection. In: Computer Vision and Image Understanding, vol. 103, pp. 80–88. Elsevier Science Inc., New York (2006)
Hampapur, A., Bolle, R.M.: Feature based indexing for media tracking. In: Proc. of Int. Conf. on Multimedia and Expo, pp. 67–70 (2000)
Hampapur, A., Hyun, K., Bolle, R.M.: Comparison of sequence matching techniques for video copy detection. In: Proc. SPIE, vol. 4676, pp. 194–201 (2002)
Herley, C.: Accurate repeat finding and object skipping using fingerprints. In: ACM Multimedia, pp. 656–665 (2005)
Herley, C.: ARGOS: automatically extracting repeating objects from multimedia streams. IEEE Transactions on Multimedia 8, 115–129 (2006)
Hua, X., Lu, L., Zhang, H.: Robust Learning-Based TV Commercial Detection. In: ICME, pp. 149–152 (2005)
Hua, X., Chen, X., Zhang, H.: Robust Video Signature Based on Ordinal Measure. In: International Conference on Image Processing (ICIP), pp. 415–423 (1998)
Kashino, K., Kurozumi, T., Murase, H.: A quick search method for audio and video signals based on histogram pruning. IEEE Transactions on Multimedia 5, 348–357 (2003)
Li, Y., Jin, J.S., Zhou, X.: Video Matching Using Binary Signature. In: Proceedings of the 2005 International Symposium on Intelligent Signal Processing and Communications Systems (ISPAC 2005), Hong Kong, December 13-16, pp. 317–320 (2005)
Li, Y., Jin, J.S., Zhou, X.: Matching Commercial Clips from TV Streams Using a Unique,Robust and Compact Signature. In: DICTA, Australia, pp. 266–272 (2005)
Lienhart, R., Kuhmunch, C., Effelsberg, W.: On the detection and recognition of television commercials. In: ICMCS, pp. 509–516. IEEE Computer Society, Los Alamitos (1997)
O’Connor, B.C.: Selecting key frames of moving image document: A digital environment for analysis and navigation. Microcomputers for Information Management 8(2), 119–133 (1991)
Nafeh, J.: Method and Apparatus for Classifying patterns of Television Programs and Commercials Based on Discerning of Broadcast Audio and Video Signal, US patent 5, 343, 251 (1994)
Sanchez, J.M., Binefa, X., Radeva, P.: Local colour analysis for scene break detection applied to tv commercial recognition. In: Proc. of Visual 1999, pp. 237–244 (1999)
Sanchez, J.M., Binefa, X., Vitria, J.: Shot Partitioning Based Recognition of TV Commercials. In: Multimedia Tools Applications, vol. 18, pp. 233–247. Kluwer Academic Publishers, Hingham (2002)
Shen, H.T., Ooi, B.C., Zhou, X.: Towards Effective Indexing for Very Large Video Sequence Database. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 730–741 (2005)
Tonomura, Y., Abe, S.: Content orient visual interface using video icons for visual database systems. Journal of Visual Languages and Computing’ 1, 183–198 (1990)
Vilanilam, J.V., Varghese, A.K.: Advertising basics! A resource guide for beginners. Response Books, New Delhi (2004)
Wolf, W.: Key frame selection by motion analysis. In: Proc. ICASSP 1996, vol. II, pp. 1228–1231 (1996)
Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S.: Adaptive key frame extraction using unsupervised clustering. In: Proc. IEEE ICIP 1998, vol. 1, pp. 866–870 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, Y., Luo, S. (2011). A TV Commercial Detection System. In: Gong, Z., Luo, X., Chen, J., Lei, J., Wang, F.L. (eds) Web Information Systems and Mining. WISM 2011. Lecture Notes in Computer Science, vol 6988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23982-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-23982-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23981-6
Online ISBN: 978-3-642-23982-3
eBook Packages: Computer ScienceComputer Science (R0)