Skip to main content

Image Reduction Using Fuzzy Quantifiers

  • Conference paper
Eurofuse 2011

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 107))

  • 645 Accesses

Abstract

In this work we propose an image reduction algorith based on local reduction operators. We analyze the construction of weak local reduction operators by means of aggregation functions and we analyze the effect of several aggregation functions in image reduction with original and noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221 (2007)

    Google Scholar 

  2. Bustince, H., Pagola, M., Barrenechea, E.: Construction of fuzzy indices from DI-subsethood measures: Application to the global comparison of images. Information Sciences 177, 906–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and Systems 160, 1819–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bustince, H., Calvo, T., De Baets, B., Fodor, J., Mesiar, R., Montero, J., Paternain, D., Pradera, A.: A class of aggregation functions encompassing two-dimensional OWA operators. Information Sciences 180, 1977–1989 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calvo, T., Beliakov, G.: Aggregation functions based on penalties. Fuzzy sets and Systems 161, 1420–1436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaira, T., Ray, A.K.: Fuzzy measures for color image retrieval. Fuzzy Sets and Systems 150, 545–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  8. Jurio, A., Pagola, M., Mesiar, R., Beliakov, G., Bustince, H.: Image magnification using interval information. IEEE Transactions on Image Processing (to appear)

    Google Scholar 

  9. Loia, V., Sessa, S.: Fuzzy relation equations for coding/decoding processes of images and videos. Information Sciences 171, 145–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Di Martino, F., Loia, V., Sessa, S.: A segmentation method for image compressed by fuzzy transform. Fuzzy Sets and Systems 161, 56–74 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Perfilieva, I.: Fuzzy Transforms and Their Applications to Image Compression. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 19–31. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Rückschlossová, T.: Aggregation operators and invariantness. PhD thesis, Slovak University of Technology, Bratislava, Slovakia (June 2003)

    Google Scholar 

  13. Rückschlossová, T., Rückschloss, R.: Homogeneous aggregation operators. Kybernetika (Prague) 42(3), 279–286 (2006)

    MathSciNet  Google Scholar 

  14. Unser, M., Aldroubi, A., Eden, M.: Enlargement or reduction of digital images with minimum loss of information. IEEE Transactions on Image Processing 4, 247–258 (1995)

    Article  Google Scholar 

  15. Xiang, S., Nie, F., Zhang, C.: Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition 41, 3600–3612 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paternain, D., Lopez-Molina, C., Bustince, H., Mesiar, R., Beliakov, G. (2011). Image Reduction Using Fuzzy Quantifiers. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds) Eurofuse 2011. Advances in Intelligent and Soft Computing, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24001-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24001-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24000-3

  • Online ISBN: 978-3-642-24001-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics