Abstract
We discuss the parallel implementation of Genetic Algorithms and Evolution Strategy on General-Purpose Graphical Units, using the OpenCL framework. Multiple evolutionary operators are tested (tournament, roulette wheel selection, uniform and Gaussian mutation, crossover, recombination), as well as different approaches for parallelism, for small and large problem sizes. We use the Island Model of Parallel GA, with random migration. Performance is measured using two graphic cards: NVidia GeForce GTX 560Ti and AMD Radeon 6950. Tests are performed in a distributed grid, using the Java Parallel Processing Framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University Press, Oxford (1996)
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. IOP Publishing Ltd. (1997)
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Basic Algorithms and Operators. IOP Publishing Ltd. (1999)
Beyer, H.G., Schwefel, H.P.: Evolution strategies A comprehensive introduction. Natural Computing 1, 3–52 (2002)
Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles 10 (1998)
De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Ann Arbor, MI, USA (1975)
Harris, M.: Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology (2008)
Harris, M., Sengupta, S., Owens, J.D.: Parallel Prefix Sum (Scan) with CUDA. In: Nguyen, H. (ed.) GPU Gems 3, Addison-Wesley, Reading (2007)
Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)
Khronos OpenCL Working Group: The OpenCL Specification, version 1.1 (2010), http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
Lőrentz, I., Maliţa, M., Andonie, R.: Evolutionary Computation on the Connex Architecture. In: The 22nd Midwest Artificial Intelligence and Cognitive Science Conference, Cincinnati, Ohio, vol. 710, CEUR-WS.org (2011)
Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software 8(14), 1–6 (2003)
Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Comput. 17, 619–632 (1991)
NVIDIA: OpenCL Programming Guide for the CUDA Architecture, 3.2 edn. (2010)
Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. chap. 46. Addison-Wesley Professional, Reading (2005)
Pospichal, P., Jaros, J., Schwarz, J.: Parallel Genetic Algorithm on the CUDA Architecture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010)
Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New York (2003)
Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog (1994)
Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least Value of a Function. The Computer Journal 3(3), 175–184 (1960)
JOCL - Java binding for the OpenCL API, http://jogamp.org/jocl/www/
JPPF - Java Parallel Processing Framework, http://www.jppf.org/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lőrentz, I., Andonie, R., Maliţa, M. (2011). An Implementation of Evolutionary Computation Operators in OpenCL. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds) Intelligent Distributed Computing V. Studies in Computational Intelligence, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24013-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-24013-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24012-6
Online ISBN: 978-3-642-24013-3
eBook Packages: EngineeringEngineering (R0)