Abstract
Pickup and Delivery Problems (PDPs) have received significant research interest in the past decades. Their industrial relevance has stimulated the study of various types of solutions. Both centralized solutions, using discrete optimization techniques, as well as distributed, multi-agent system (MAS) solutions, have proven their merits. However, real PDP problems today are more and more characterized by (1) dynamism - in terms of tasks, service time, vehicle availability, infrastructure availability, and (2) their large scale - in terms of the geographical field of operation, the number of pickup and delivery tasks and vehicles. A combination of both characteristics brings unsolved challenges.
Delegate MAS is a coordination mechanism that could prove to be valuable for constructing a decentralized solution for dynamic and large scale PDP problems. In this paper, we illustrate a solution based on delegate MAS for solving PDP. Our solution enables different agents to dynamically collect and disseminate local information and make decisions in a fully decentralized way. We applied our approach to a concrete case study. Experimental results indicate the suitability of the approach for dynamic and large scale PDP problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Caridi, M., Cavalieri, S.: Multi-agent Systems in Production Planning and Control: an Overview. Production Planning and Control 15(2), 106–118 (2004)
Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-Agent Real Time Scheduling System for Taxi Companies. In: Autonomous Agents and Multi-Agent Systems, AAMAS (2009)
Dorer, K., Calisti, M.: An Adaptive Solution to Dynamic Transport Optimization. In: Proc. of 4th Int. Conf. on Autonomous Agents and Multi-Agent Systems, AAMAS (2005)
Parragh, S.N., Doerner, K.F., Harti, R.F.: A survey on PDP Part II: Transportation between Pickup and Delivery Locations. Journal fr Betriebswirtschaft 58(2), 81–117 (2008)
Eksioglu, B., Vural, A.V., Reisman, A.: The Vehicle Routing Problem: A Taxonomic Review. Computers and Industrial Engineering 57(4), 1472–1483 (2009)
Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic Pickup and Delivery Problems. European Journal of Operational Research 202, 8–15 (2010)
Hentenryck, P.V., Bent, R.W.: Online Stochastic Combinatorial Optimization. Operations Research 52, 977–987 (2004)
Rizoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.: Ant Colony Optimization for Real World Vehicle Routing Problems. Swarm Intelligence 1(2), 135–151 (2007)
Kouki, Z., Chaar, B.F., Ksouri, M.: Extended CNP Framework for the dynamic Pickup and Delivery Problem Solving. In: Artificial Intelligence and Innovations III 296 (2009)
Fischer, K., Muller, J., Pischel, M.: Cooperative Transportation Scheduling: An Application domain for DAI. Journal of Applied Artificial Intelligence (1995)
Kozlak, J., Creput, J.C., Hilaire, V., Koukam, A.: Multi-agent Approach to Dynamic PDP with Uncertain Knowledge about Future Transport Demands. Fundamenta Informaticae 71 (2006)
Holvoet, T., Valckenaers, P.: Exploiting the Environment for Coordinating Agent Intentions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 51–66. Springer, Heidelberg (2007)
Claes, R., Holvoet, T.: Maintaining a Distributed Symbiotic Relationship using Delegate Multi agent Systems. In: Proc. of Winter Simulation Conference (2010)
Weyns, D., Holvoet, T., Helleboogh, A.: Anticipatory Vehicle Routing Using Delegate Multi-Agent Systems. In: Proc. of IEEE intelligent Transportation Systems Conference (2007)
Gendreau, M., Guertin, F., Potvin, J.Y., Seguin, R.: Neighborhood Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries. Transportation Research Part C 14, 157–174 (2005)
Psaraftis, H.N.: Dynamic Vehicle Routing: Status and Prospects. Annals of Operations Research 61, 143–164 (1995)
Gutenschwager, K., Niklaus, C., Vob, S.: Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online PDP. Transportation Science 38, 434–446 (2004)
Powell, W.B., Towns, M.T., Marar, A.: On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of user Noncompliance. Transportation Science 34(1), 67–85 (2000)
Jennings, N.R.: On Agent-based Software Engineering. Artificial Intelligence 117, 277–296 (2000)
Burke, E.K., Kendall, G. (eds.): Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Heidelberg (2005)
Marrow, P.: Scalability in Multi-Agent Systems: The DIET Project. In: Workshop on Infrastructure for Agents. MAS and Scalable Multi-Agent Systems at Autonomous Agents (2001)
Wooldridge, M. (ed.): An Introduction to MultiAgent Systems. Wiley, Chichester (2009)
Van Dyke Parunak, H., Brueckner, S.A., Weyns, D., Holvoet, T., Verstraete, P., Valckenaers, P.: E Pluribus Unum: Polyagent and Delegate MAS Architectures. In: Antunes, L., Paolucci, M., Norling, E. (eds.) MABS 2007. LNCS (LNAI), vol. 5003, pp. 36–51. Springer, Heidelberg (2008)
Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of Delegate MAS. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2009)
Weyns, D., Holvoet, T.: From Reactive Robotics to Situated Multiagent Systems: A Historical Perspective on the Role of the Environment in Multiagent Systems. In: Workshop on Engineering Societies in the Agents World, pp. 31–56 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hanif, S., van Lon, R.R.S., Gui, N., Holvoet, T. (2011). Delegate MAS for Large Scale and Dynamic PDP: A Case Study. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds) Intelligent Distributed Computing V. Studies in Computational Intelligence, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24013-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-24013-3_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24012-6
Online ISBN: 978-3-642-24013-3
eBook Packages: EngineeringEngineering (R0)