Skip to main content

Cloud Storage and Online Bin Packing

  • Conference paper
Intelligent Distributed Computing V

Part of the book series: Studies in Computational Intelligence ((SCI,volume 382))

  • 819 Accesses

Abstract

We study the problem of allocating memory of servers in a data center based on online requests for storage. Given an online sequence of storage requests and a cost associated with serving the request by allocating space on a certain server one seeks to select the minimum number of servers as to minimize total cost. We use two different algorithms and propose a third algorithm. We show that our proposed algorithm performs better for large number of random requests in terms of the variance in the average number of servers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ullman, J.D.: The performance of a memory allocation algorithm. Tech. Report 100, Princeton University, Princeton, NJ (1971)

    Google Scholar 

  2. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: An updated survey, pp. 46–93. PWS Publishing Co., USA (1997)

    Google Scholar 

  3. Coffman Jr., E.G., Csirik, J.: Performance guarantees for one-dimensional bin packing. ch. 32. Chapman & Hall, CRC (2007)

    Google Scholar 

  4. Csirik, J., Woeginger, G.J.: In: Fiat, A., Woeginger, G.J. (eds.). On-line packing and covering problems. ch. 7, pp. 147–177. Springer, Heidelberg (1998)

    Google Scholar 

  5. Li, B., Li, J., Huai, J., Wo, T., Li, Q., Zhong, L.: Enacloud: An energy-saving application live placement approach for cloud computing environments. In: IEEE International Conference on Cloud Computing (CLOUD), pp. 17–24 (2009)

    Google Scholar 

  6. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Conference on Power Aware Computing and Systems (HotPower), vol. 10 (2008)

    Google Scholar 

  7. Lee, C., Lee, D.: A simple on-line bin-packing algorithm. Journal of ACM 32, 562–572 (1985)

    Article  MATH  Google Scholar 

  8. Seiden, S.S.: An optimal online algorithm for bounded space variable-sized bin packing. SIAM Journal on Discrete Mathematics 14, 2001 (2000)

    MathSciNet  Google Scholar 

  9. Drake, M.: Bin packing (2006)

    Google Scholar 

  10. Seiden, S.S., Van Stee, R., Epstein, L.: New bounds for variable-sized online bin-packing. SIAM Journal on Computing, 455–469 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bein, D., Bein, W., Venigella, S. (2011). Cloud Storage and Online Bin Packing. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds) Intelligent Distributed Computing V. Studies in Computational Intelligence, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24013-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24013-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24012-6

  • Online ISBN: 978-3-642-24013-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics