Abstract
In general, human behavior analysis relies on a sequence of human segments, e.g. gait recognition aims to address human identification based on people’s manners of walking, and thus relies on the segmented silhouettes. Background subtraction is the most widely used approach to segment foreground, while dynamic scenes make it difficult to work. In this paper, we propose to combine Mean-Shift-based tracking with adaptive scale and Graph-cuts-based segmentation with label propagation. The average precision on a number of sequences is 0.82, and the average recall is 0.72. Besides, our method only requires weak user interaction and is computationally efficient. We compare our method with its variant without label propagation, as well as GrabCut. For the tracking module only, we compare Mean Shift with several state-of-the-art methods (i.e. OnlineBoost, SemiBoost, MILTrack, FragTrack).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, L., Grimson, W.E.L.: Gait Analysis for Recognition and Classification. In: Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 148–155 (2002)
Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans. PAMI 26(9) (2004)
Malcolm, J., Rathi, Y., Tannenbaum, A.: Multi-Object Tracking Through Clutter Using Graph Cuts. In: Proc. IEEE ICCV, pp. 1–5 (2007)
Piccardi, M.: Background Subtraction Techniques: A Review. In: Proc. IEEE Int. Conf. Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)
Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Background Cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)
Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous Segmentation and 3D Pose Estimation of Humans using Dynamic Graph-Cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg (2006)
Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer Segmentation of Live Video. In: Proc. IEEE CVPR, pp. 53–60 (2006)
Juan, O., Boykov, Y.: Active Graph Cuts. In: Proc. IEEE CVPR, vol. 1, pp. 1023–1029 (2006)
Li, Y., Sun, J., Shum, H.Y.: Video Object Cut and Paste. Proc. ACM SIGGRAPH 2005, ACM Trans. Graphics 24(3), 595–600 (2005)
Zhong, F., Qin, X., Peng, Q.: Transductive Segmentation of Live Video with Non-Stationary Background. In: Proc. IEEE CVPR, pp. 2189–2196 (2010)
Niebles, J., Han, B., Ferencz, A., Fei-Fei, L.: Extracting Moving People from Internet Videos. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 527–540. Springer, Heidelberg (2008)
Niebles, J., Han, B., Fei-Fei, L.: Efficient Extraction of Human Motion Volumes by Tracking. In: Proc. IEEE CVPR, pp. 655–662 (2010)
Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient Hierarchical Graph-Based Video Segmentation. In: Proc. IEEE CVPR, pp. 2141–2148 (2010)
Bai, X., Wang, J., Sapiro, G.: Dynamic Color Flow: A Motion-Adaptive Color Model for Object Segmentation in Video. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 617–630. Springer, Heidelberg (2010)
Bugeau, A., Perez, P.: Detection and Segmentation of Moving Objects in Highly Dynamic Scenes. In: Proc. IEEE CVPR (2007)
Ren, X., Malik, J.: Tracking as Repeated Figure/Ground Segmentation. In: CVPR (2007)
Grabner, H., Bischof, H.: On-line Boosting and Vision. In: Proc. CVPR, pp. 260–267 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Babenko, B., Yang, M.H., Belongie, S.: Visual Tracking with Online Multiple Instance Learning. In: Proc. IEEE CVPR, pp. 983–990 (2009)
Comaniciu, D., Ramesh, V., Meer, T.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. In: Proc. IEEE CVPR, vol. 2, pp. 142–149 (2000)
Boykov, Y., Jolly, M.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. In: Proc. IEEE ICCV, vol. 1, pp. 105–112 (2001)
Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: Interactive Foreground Extraction using Iterated Graph Cuts. Proc. ACM SIGGRAPH 2004, ToG 23(3), 309–314 (2004)
Adam, A., Rivlin, E., Shimshoni, I.: Robust Fragments-based Tracking using the Integral Histogram. In: Proc. IEEE CVPR, vol. 1, pp. 798–805 (2006)
Badrinarayanan, V., Galasso, F., Cipolla, R.: Label Propagation in Video Sequences. In: Proc. IEEE CVPR, pp. 3265–3272 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiang, X. (2011). An Attempt to Segment Foreground in Dynamic Scenes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-24028-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24027-0
Online ISBN: 978-3-642-24028-7
eBook Packages: Computer ScienceComputer Science (R0)