Abstract
Common techniques in structure from motion do not explicitly handle foreground occlusions and disocclusions, leading to several trajectories of a single 3D point. Hence, different discontinued trajectories induce a set of (more inaccurate) 3D points instead of a single 3D point, so that it is highly desirable to enforce long continuous trajectories which automatically bridge occlusions after a re-identification step. The solution proposed in this paper is to connect features in the current image to trajectories which discontinued earlier during the tracking. This is done using a correspondence analysis which is designed for wide baselines and an outlier elimination strategy using the epipolar geometry. The reference to the 3D object points can be used as a new constraint in the bundle adjustment. The feature localization is done using the SIFT detector extended by a Gaussian approximation of the gradient image signal. This technique provides the robustness of SIFT coupled with increased localization accuracy.
Our results show that the reconstruction can be drastically improved and the drift is reduced, especially in sequences with occlusions resulting from foreground objects. In scenarios with large occlusions, the new approach leads to reliable and accurate results while a standard reference method fails.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Frahm, J.M., Pollefeys, M., Lazebnik, S., Gallup, D., Clipp, B., Raguram, R., Wu, C., Zach, C., Johnson, T.: Fast robust large-scale mapping from video and internet photo collections. Journal of Photogrammetry and Remote Sensing (ISPRS) 65, 538–549 (2010)
Hasler, N., Rosenhahn, B., Thormählen, T., Wand, M., Seidel, H.P.: Markerless motion capture with unsynchronized moving cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)
van den Hengel, A., Dick, A., Thormählen, T., Ward, B., Torr, P.H.S.: Videotrace: rapid interactive scene modelling from video. In: ACM SIGGRAPH 2007 papers. SIGGRAPH 2007, vol. (86). ACM, New York (2007)
Pollefeys, M., Gool, L.V.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. International Journal of Computer Vision (IJCV) 59, 207–232 (2004)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision (IJCV) 80, 189–210 (2008)
Thormählen, T., Hasler, N., Wand, M., Seidel, H.P.: Registration of sub-sequence and multi-camera reconstructions for camera motion estimation. Journal of Virtual Reality and Broadcasting 7 (2010)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference (BMVC), vol. 1, pp. 384–393 (2002)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27, 1615–1630 (2005)
Brown, M., Lowe, D.G.: Invariant features from interest point groups. In: British Machine Vision Conference (BMVC), pp. 656–665 (2002)
Engels, C., Fraundorfer, F., Nistér, D.: Integration of tracked and recognized features for locally and globally robust structure from motion. In: VISAPP (Workshop on Robot Perception), pp. 13–22 (2008)
Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 311–326. Springer, Heidelberg (1998)
Liu, J., Hubbold, R.: Automatic camera calibration and scene reconstruction with scale-invariant features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A.V., Gopi, M., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 558–568. Springer, Heidelberg (2006)
Cornelis, K., Verbiest, F., Van Gool, L.: Drift detection and removal for sequential structure from motion algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26, 1249–1259 (2004)
Fischler, R.M.A., Bolles, C.: Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)
Zhang, G., Dong, Z., Jia, J., Wong, T.T., Bao, H.: Efficient non-consecutive feature tracking for structure-from-motion. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 422–435. Springer, Heidelberg (2010)
Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Bivariate feature localization for sift assuming a gaussian feature shape. In: Bebis, G., Boyle, R.D., Parvin, B., Koracin, D., Chung, R., Hammoud, R.I., Hussain, M., Tan, K.H., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 264–275. Springer, Heidelberg (2010)
Thormählen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and structure estimation from multiple views. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 523–535. Springer, Heidelberg (2004)
Torr, P.H.S., Fitzgibbon, A.W., Zisserman, A.: The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. International Journal of Computer Vision (IJCV) 32, 27–44 (1999)
Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Half-sift: High-accurate localized features for sift. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Feature Detectors and Descriptors: The State Of The Art and Beyond, pp. 31–38 (2009)
Hartley, R.I., Zisserman, A.: Multiple View Geometry, 2nd edn. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J. (2011). Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-24028-7_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24027-0
Online ISBN: 978-3-642-24028-7
eBook Packages: Computer ScienceComputer Science (R0)