Skip to main content

Visual Tracking Based on Log-Euclidean Riemannian Sparse Representation

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6938))

Included in the following conference series:

Abstract

Recently, sparse representation has been utilized in many computer vision tasks and adapted for visual tracking. Sparsity-based visual tracking is formulated as searching candidates with minimal reconstruction errors from a template subspace with sparsity constraints in the approximation coefficients. However, an intensity template is easily corrupted by noise and not robust for target tracking under a dynamic environment. The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. Further, the covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties as well as their correlation are characterized, and its dimension is small. Although the covariance matrix lies on Riemannian manifolds, its log-transformation can be measured on a Euclidean subspace. Based on the covariance region descriptor and using the sparse representation, we propose a novel tracking approach on the Log-Euclidean Riemannian subspace. Specifically, the target region is characterized by a covariance matrix which is then log-transformed from the Riemannian manifold to the Euclidean subspace. After that, the target tracking problem is integrated under a sparse approximation framework, where the sparsity is achieved by solving an ℓ1-regularization problem. Then the candidate with the smallest approximation is taken as the tracked target. For target propagation, we use the Bayesian state inference framework, which propagates sample distributions over time using the particle filter algorithm. To evaluate our method, we have collected several video sequences and the experimental results show that our tracker can achieve robustly and reliably target tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Isard, M., Blake, A.: Condensation-Conditional Density Propagation for Visual Tracking. Int’l Journal of Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

  2. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Learning for Matrix Factorization and Sparse Coding. J. Machine Learning Research 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Mei, X., Ling, H.: Robust Visual Tracking using ℓ1 Minimization. In: ICCV (2009)

    Google Scholar 

  4. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE T. Pattern Analysis and Machine Intelligence 31(1), 210–227 (2009)

    Article  Google Scholar 

  6. Wu, Y., Wu, B., Liu, J., Lu, H.Q.: Probabilistic Tracking on Riemannian Manifolds. In: ICPR (2008)

    Google Scholar 

  7. Wu, Y., Wang, J.Q., Lu, H.Q.: Robust Bayesian tracking on Riemannian manifolds via fragments-based representation. In: ICASSP (2009)

    Google Scholar 

  8. Wu, Y., Cheng, J., Wang, J., Lu, H.: Real-time Visual Tracking via Incremental Covariance Tensor Learning. In: ICCV (2009)

    Google Scholar 

  9. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4) (2006)

    Google Scholar 

  10. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. on Matrix Analysis and Applications 29(1) (2008)

    Google Scholar 

  11. Li, X., Hu, W., Zhang, Z., Zhang, X., Zhu, M., Cheng, J.: Visual tracking via incremental Log-Euclidean Riemannian subspace learning. In: CVPR (2008)

    Google Scholar 

  12. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int’l Journal of Computer Vision 66(1), 41–66 (2006)

    Article  MATH  Google Scholar 

  13. Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on Lie Algebra. In: CVPR, pp. 728–735 (2006)

    Google Scholar 

  15. Donoho, D.: Compressed sensing. IEEE T. Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ling, H., Wu, Y., Blasch, E., Chen, G., Lang, H., Bai, L.: Evaluation of Visual Tracking in Extremely Low Frame Rate Wide Area Motion Imagery. Fusion (2011)

    Google Scholar 

  17. Chen, M., Pang, S.K., Cham, T.J., Goh, A.: Visual Tracking with Generative Template Model based on Riemannian Manifold of Covariances. Fusion (2011)

    Google Scholar 

  18. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and fast collaborative tracking with two stage sparse optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum Error Bounded Efficient ℓ1 Tracker with Occlusion Detection. In: CVPR (2011)

    Google Scholar 

  20. Hong, X., Chang, H., Shan, S., Chen, X., Gao, W.: Sigma set: A small second order statistical region descriptor. In: CVPR, pp. 1802–1809 (2009)

    Google Scholar 

  21. Tosato, D., Farenzena, M., Spera, M., Murino, V., Cristani, M.: Multi-class classification on Riemannian manifolds for video surveillance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 378–391. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian manifolds. In: CVPR (2007)

    Google Scholar 

  23. Paisitkriangkrai, S., Shen, C., Zhang, J.: Fast pedestrian detection using a cascade of boosted covariance features. IEEE T. Circuits & Systems for Video Technology 18(8), 1140–1151 (2008)

    Article  Google Scholar 

  24. Pang, Y., Yuan, Y., Li, X.: Gabor-based region covariance matrices for face recognition. IEEE T. Circuits & Systems for Video Technology 18(7), 989–993 (2008)

    Article  Google Scholar 

  25. Guo, K., Ishwar, P., Konrad, J.: Action change detection in video by covariance matching of silhouette tunnels. In: ICASSP, pp. 1110–1113 (2010)

    Google Scholar 

  26. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. on Pure and Applied Mathematics 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Int’l Journal of Computer Vision 56, 221–255 (2004)

    Article  MATH  Google Scholar 

  28. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE T. Pattern Analysis and Machine Intelligence 25, 564–577 (2003)

    Article  Google Scholar 

  29. Hager, G., Belhumeur, P.: Real-time tracking of image regions with changes in geometry and illumination. In: CVPR, pp. 403–410 (1996)

    Google Scholar 

  30. Wu, Y., Blasch, E., Chen, G., Bai, L., Ling, H.: Multiple Source Data Fusion via Sparse Representation for Robust Visual Tracking. Fusion (2011)

    Google Scholar 

  31. Zhou, S.K., Chellappa, R., Moghaddam, B.: Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE T. Image Processing 11, 1491–1506 (2004)

    Article  Google Scholar 

  32. https://www.sdms.afrl.af.mil/index.php?collection=video_sample_set_2

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y., Ling, H., Blasch, E., Bai, L., Chen, G. (2011). Visual Tracking Based on Log-Euclidean Riemannian Sparse Representation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24028-7_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24027-0

  • Online ISBN: 978-3-642-24028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics