Skip to main content

Shape Abstraction through Multiple Optimal Solutions

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6939))

Included in the following conference series:

Abstract

Shape abstraction is an important problem facing researchers in many fields such as pattern recognition, computer vision, and industrial design. Given a set of shapes, a recently developed shape abstraction framework generates an abstracted shape through the correspondences between their features. The correspondences are obtained based on the optimal solution of a well known transportation problem. Considering the case where multiple optimal solutions exist for one problem, this paper ranks all optimal solutions based on how much they preserve the local neighborhood relations and creates the abstracted shape using the solution with the highest rank. Experimental evaluation of the framework demonstrates that the proposed approach compares favorably with the previous shape abstraction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications, pp. 4–7. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Bajalinov, E.B.: Linear-Fractional Programming: Theory, Methods, Applications and Software. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  3. Blum, H.: Biological shape and visual science (part i). Journal of Theoretical Biology 38(2), 205–287 (1973)

    Article  Google Scholar 

  4. Chen, E., Parent, R.: Shape averaging and its applications to industrial design. IEEE Computer Graphics and Applications 9(1), 47–54 (1989)

    Article  Google Scholar 

  5. Christofides, N., Valls, V.: Finding all optimal solutions to the network flow problem. Mathematical Programming Studies 26, 209–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  7. Demirci, F., Shokoufandeh, A., Dickinson, S.: Skeletal shape abstraction from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 944–952 (2009)

    Article  Google Scholar 

  8. Demirci, F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. International Journal of Computer Vision 69(2), 203–222 (2006)

    Article  MATH  Google Scholar 

  9. Dickinson, S.: The Evolution of Object Categorization and the Challenge of Image Abstraction, pp. 1–37. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  10. Gupta, A.: Embedding tree metrics into low-dimensional euclidean spaces. Discrete & Computational Geometry 24(1), 105–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hillier, F., Lieberman, G.: Introduction to mathematical programming. McGraw-Hill, New York (1990)

    MATH  Google Scholar 

  12. Jiang, X., Munger, A., Bunke, H.: On median graphs: properties, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10) (2001)

    Google Scholar 

  13. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Learning hierarchical shape models from examples. In: Proceedings, International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 251–267 (2005)

    Google Scholar 

  14. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  15. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  16. Winston, P., Binford, T., Katz, B., Lowry, M.: Learning physical description from functional descriptions, examples, and precedents. In: Proceedings, AAAI, Palo Alto, CA, pp. 433–439 (August 1983)

    Google Scholar 

  17. Zhu, S.-C., Mumford, D.: A stochastic grammar of images. Foundations and Trends in Computer Graphics and Vision 2, 259–362 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akimaliev, M., Demirci, M.F. (2011). Shape Abstraction through Multiple Optimal Solutions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24031-7_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24030-0

  • Online ISBN: 978-3-642-24031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics