Skip to main content

Evaluating Feature Combination in Object Classification

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6939))

Included in the following conference series:

Abstract

Feature combination is used in object classification to combine the strength of multiple complementary features and yield a more powerful feature. While some work can be found in literature to calculate the weights of features, the selection of features used in combination is rarely touched. Different researchers usually use different sets of features in combination and obtain different results. It’s not clear to which degree the superior combination results should be attributed to the combination methods and not the carefully selected feature sets. In this paper we evaluate the impact of various feature-related factors on feature combination performance. Specifically, we studied the combination of various popular descriptors, kernels and spatial pyramid levels through extensive experiments on four datasets of diverse object types. As a result, we provide some empirical guidelines on designing experimental setups and combination algorithms in object classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  2. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393.

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histogram of oriented graidents for human detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  4. Yang, J.J., Li, Y.N., Tian, Y.H., Duan, L.Y., Gao, W.: Group-sensitive multiple kernel learning for object categorization. In: IEEE International Conference on Computer Vision, pp. 436–443 (2009)

    Google Scholar 

  5. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, 27–72 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Kumar, A., Sminchisescu, C.: Support kernel machines for object recognition. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  7. Lin, Y.Y., Liu, T.L., Fuh, C.S.: Local ensemble kernel learning for object category recognition. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  8. Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  9. Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. In: IEEE International Conference on Computer Vision, pp. 221–228 (2009)

    Google Scholar 

  10. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR, Workshop on Generative-Model Based Vision, p. 178 (2004)

    Google Scholar 

  11. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision 42, 145–175 (2001)

    Article  MATH  Google Scholar 

  12. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 524–531 (2005)

    Google Scholar 

  13. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)

    Google Scholar 

  14. Jia, L.L., Fei-Fei, L.: What, where and who? classifying event by scene and object recognition. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  15. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: IEEE International Conference on Computer Vision, pp. 1447–1454 (2006)

    Google Scholar 

  16. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007)

    Google Scholar 

  17. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transaction on Pattern Analsis and Machine Intelligence 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  18. Shechtman, E., Irani, M.: Matching local self-similarities across imagesn and videos. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  19. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Image and Vision Computing 62, 61–81 (2005)

    Article  Google Scholar 

  20. Schuffler, P., Fuchs, T., Ong, C., Roth, V., Buhmann, J.: Computational tma analysis and cell nucleus classification of renal cell carcinoma. In: 32 Annual Symposium of the German Pattern Recognition Society, pp. 202–211 (2010)

    Google Scholar 

  21. Ulas, A., Duin, R., Castellani, U., Loog, M., Bicego, M., Murino, V., Bellani, M., Cerruti, S., Tansella, M., Brambilla, P.: Dissimilarity-based detection of schizophrenia. In: ICPR Workshop on Pattern Recognition Challenges in FMRI Neuroimaging, pp. 32–35 (2010)

    Google Scholar 

  22. Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: International Conference on Image Processing, pp. 513–516 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hou, J., Zhang, BP., Qi, NM., Yang, Y. (2011). Evaluating Feature Combination in Object Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24031-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24030-0

  • Online ISBN: 978-3-642-24031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics