Abstract
We describe a method to control a motion of particles during physically based simulation. Specifically we design force fields which drive particles so as to shape a human figure. We define attraction, steering and repulsion force fields to achieve a target shape and avoid obstacles. We use key frames of a skeleton of a human figure as a target shape and distribute attraction points over the target shape as a reference to attract the particles. Compared to previous control techniques, our method is fast enough to run in real time and shows a stable behavior of particles not sacrificing plausible simulation. Since our approach is suitable for real time applications, a user can interact with particles or obstacles in a physically satisfiable manner during the simulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2006, pp. 7–12. Eurographics Association, Aire-la-Ville (2006)
Zhang, G., Zhu, D., Qiu, X., Wang, Z.: Skeleton-based control of fluid animation. Vis. Comput. 27, 199–210 (2011)
Fattal, R., Lischinski, D.: Target-driven smoke animation. ACM Trans. Graph. 23, 441–448 (2004)
Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2005, pp. 229–236. ACM, New York (2005)
Zickler, S., Veloso, M.: Tactics-based behavioural planning for goal-driven rigid-body control. Computer Graphics Forum 28, 2302–2314 (2009)
Twigg, C.D., James, D.L.: Many-worlds browsing for control of multibody dynamics. ACM Trans. Graph. 26 (2007)
Twigg, C.D., James, D.L.: Backward steps in rigid body simulation. ACM Trans. Graph. 27, 25:1–25:10 (2008)
Popović, J., Seitz, S.M., Erdmann, M., Popović, Z., Witkin, A.: Interactive manipulation of rigid body simulations. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 209–217. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)
Park, J., Fussell, D.S., Pandy, M., Browne, J.C.: Realistic animation using musculotendon skeletal dynamics and suboptimalcontrol. Technical report, University of Texas at Austin, Austin, TX, USA (1992)
Reeves, W.T.: Particle systems technique for modeling a class of fuzzy objects. ACM Trans. Graph. 2, 91–108 (1983)
Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2003, pp. 154–159. Eurographics Association, Aire-la-Ville (2003)
Bell, N., Yu, Y., Mucha, P.J.: Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2005, pp. 77–86. ACM, New York (2005)
Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21, 25–34 (1987)
Reynolds, C.: Steering Behaviors for Autonomous Characters. In: Game Developers Conference (1999)
Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, pp. 99–108. Eurographics Association, Aire-la-Ville (2007)
Xu, J., Jin, X., Yu, Y., Shen, T., Zhou, M.: Shape-constrained flock animation. Comput. Animat. Virtual Worlds 19, 319–330 (2008)
Roh, B.-S., Kim, C.-H.: Controllable multi-phase smoke with lagrangian particles. In: Nishita, T., Peng, Q., Seidel, H.-P. (eds.) CGI 2006. LNCS, vol. 4035, pp. 115–123. Springer, Heidelberg (2006)
Limtrakul, S., Hantanong, W., Kanongchaiyos, P., Nishita, T.: Reviews on physically based controllable fluid animation. Engineering Journal 14, 41–52 (2010)
Treuille, A., McNamara, A., Popović, Z., Stam, J.: Keyframe control of smoke simulations. ACM Trans. Graph. 22, 716–723 (2003)
McNamara, A., Treuille, A., Popović, Z., Stam, J.: Fluid control using the adjoint method. ACM Trans. Graph. 23, 449–456 (2004)
Hong, J.M., Kim, C.H.: Controlling fluid animation with geometric potential: Research articles. Comput. Animat. Virtual Worlds 15, 147–157 (2004)
Ammann, C., Bloom, D., Cohen, J.M., Courte, J., Flores, L., Hasegawa, S., Kalaitzidis, N., Tornberg, T., Treweek, L., Winter, B., Yang, C.: The birth of sandman. In: ACM SIGGRAPH 2007 Sketches, SIGGRAPH 2007, ACM, New York (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rusdi Syamsuddin, M., Kim, J. (2011). Controllable Simulation of Particle System. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_71
Download citation
DOI: https://doi.org/10.1007/978-3-642-24031-7_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24030-0
Online ISBN: 978-3-642-24031-7
eBook Packages: Computer ScienceComputer Science (R0)