Skip to main content

Fast and Scalable Rendezvousing

  • Conference paper
Distributed Computing (DISC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6950))

Included in the following conference series:

Abstract

In an asymmetric rendezvous system, such as an unfair synchronous queue and an elimination array, threads of two types, consumers and producers, show up and are matched, each with a unique thread of the other type. Here we present a new highly scalable, high throughput asymmetric rendezvous system that outperforms prior synchronous queue and elimination array implementations under both symmetric and asymmetric workloads (more operations of one type than the other). Consequently, we also present a highly scalable elimination-based stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools based on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-Cummings Publishing Co. Inc., Redwood City (1991)

    MATH  Google Scholar 

  3. Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: a scalable memory allocator for multithreaded applications. SIGARCH Computer Architecture News 28(5), 117–128 (2000)

    Article  Google Scholar 

  4. Hanson, D.R.: C interfaces and implementations: techniques for creating reusable software. Addison-Wesley Longman Publishing Co., Inc., Boston (1996)

    Google Scholar 

  5. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-parallelism tradeoff. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 355–364. ACM, New York (2010)

    Google Scholar 

  6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based synchronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 79–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004, pp. 206–215. ACM, New York (2004)

    Chapter  Google Scholar 

  8. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages and Systems (TOPLAS) 13, 124–149 (1991)

    Article  Google Scholar 

  9. Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange channel. In: Workshop on Synchronization and Concurrency in Object-Oriented Languages, SCOOL 2005 (October 2005)

    Google Scholar 

  10. Lea, D., Scherer III, W.N., Scott, M.L.: java.util.concurrent.exchanger source code (2011), http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/Exchanger.java

  11. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement scalable and lock-free fifo queues. In: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2005, pp. 253–262. ACM, New York (2005)

    Google Scholar 

  12. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2006, pp. 147–156. ACM, New York (2006)

    Google Scholar 

  13. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks: preliminary version. In: Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1995, pp. 54–63. ACM, New York (1995)

    Chapter  Google Scholar 

  14. Shavit, N., Zemach, A.: Diffracting trees. ACM Transactions on Computer Systems (TOCS) 14, 385–428 (1996)

    Article  Google Scholar 

  15. Shavit, N., Zemach, A.: Combining funnels: A dynamic approach to software combining. Journal of Parallel and Distributed Computing 60(11), 1355–1387 (2000)

    Article  MATH  Google Scholar 

  16. Treiber, R.K.: Systems programming: Coping with parallelism. Tech. Rep. RJ5118, IBM Almaden Research Center (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afek, Y., Hakimi, M., Morrison, A. (2011). Fast and Scalable Rendezvousing. In: Peleg, D. (eds) Distributed Computing. DISC 2011. Lecture Notes in Computer Science, vol 6950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24100-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24100-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24099-7

  • Online ISBN: 978-3-642-24100-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics