Skip to main content

Optimization of N-Queens Solvers on Graphics Processors

  • Conference paper
Advanced Parallel Processing Technologies (APPT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6965))

Included in the following conference series:

Abstract

While graphics processing units (GPUs) show high performance for problems with regular structures, they do not perform well for irregular tasks due to the mismatches between irregular problem structures and SIMD-like GPU architectures. In this paper, we explore software approaches for improving the performance of irregular parallel computation on graphics processors. We propose general approaches that can eliminate the branch divergence and allow runtime load balancing. We evaluate the optimization rules and approaches with the n-queens problem benchmark. The experimental results show that the proposed approaches can substantially improve the performance of irregular computation on GPUs. These general approaches could be easily applied to many other irregular problems to improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hussein, M., Abd-Almageed, W.: Efficnent Band Approximation of Gram Matrices for Large Scale Kernel Methods on GPUs. In: Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–10. ACM Press, New York (2009)

    Chapter  Google Scholar 

  2. Zhang, E.Z., Jiang, Y., Guo, Z., Shen, X.: Streamlining GPU applications on the fly: thread divergence elimination through runtime thread-data remapping. In: 24th ACM International Conference on Supercomputing (ICS), pp. 115–126. ACM Press, New York (2010)

    Chapter  Google Scholar 

  3. Cederman, D., Tsigas, P.: On Dynamic Load Balancing on Graphics Processors. In: 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pp. 57–64. ACM Press, New York (2008)

    Google Scholar 

  4. Tzeng, S., Patney, A., Owens, J.D.: Task Management for Irregular-ParallelWorkloads on the GPU. In: High Performance Graphics 2010, pp. 29–37. ACM Press, New York (2010)

    Google Scholar 

  5. Aila, T., Laine, S.: Understanding the efficiency of ray traversal on GPUs. In: Proceedings of High Performance Graphics 2009, pp. 145–149. ACM Press, New York (2009)

    Google Scholar 

  6. Solomon, S., Thulasiraman, P.: Performance Study of Mapping Irregular Computations on GPUs. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  7. Deng, Y., Wang, B.D., Mu, S.: Taming Irregular EDA Applications on GPUs. In: Proceedings of the 2009 International Conference on Computer-Aided Design, pp. 539–546. ACM Press, New York (2009)

    Google Scholar 

  8. Vuduc, R., Chandramowlishwaran, A., Choi, J.W., Guney, M.E., Shringarpure, A.: On the Limits of GPU Acceleration. In: Hot Topics in Parallelism (HotPar). USENIX Association, Berkeley (2010)

    Google Scholar 

  9. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified Graphics and Computing Architecture. J. IEEE Micro. 28, 39–55 (2008)

    Article  Google Scholar 

  10. Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow. In: 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 407–420. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  11. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. J. Discrete Math. 309, 1–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bozinovski, A., Bozinovski, S.: n-queenss pattern generation: an insight into space complexity of a backtracking algorithm. In: 2004 International Symposium on Information and Communication Technologies, pp. 281–286. Trinity College Dublin, Dublin (2004)

    Google Scholar 

  13. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-Queen Problem Using ACO. In: IEEE 13th International Multitopic Conference (INMIC), pp. 1–5. IEEE Press, New York (2009)

    Google Scholar 

  14. QUEESNTUD project, http://queens.inf.tu-dresden.de/

  15. Shu, W., Wu, M.Y.: Asynchronous problems on SIMD parallel computers. J. IEEE Trans. on Parallel and Distributed Systems 6, 704–713 (1995)

    Article  Google Scholar 

  16. Blas, A.D., Hughey, R.: Explicit SIMD Programming for Asynchronous Applications. In: IEEE International Conference on Application-Specific Systems, Architectures, and Processors, pp. 258–267. IEEE Press, New York (2000)

    Chapter  Google Scholar 

  17. Cull, P., Pandey, R.: Isomorphism and the n-queenss problem. J. ACM SIGCSE Bulletin 26, 29–36 (1994)

    Article  Google Scholar 

  18. NVIDIA CUDA C Programming Guide, http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, T., Shu, W., Wu, MY. (2011). Optimization of N-Queens Solvers on Graphics Processors. In: Temam, O., Yew, PC., Zang, B. (eds) Advanced Parallel Processing Technologies. APPT 2011. Lecture Notes in Computer Science, vol 6965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24151-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24151-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24150-5

  • Online ISBN: 978-3-642-24151-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics