Abstract
With explosive growth of multimedia data on internet, the effective information retrieval from a large scale of multimedia data becomes more and more important. To retrieve these multimedia data automatically, some features in them must be extracted. Hence, image feature extraction algorithms have been a fundamental component of multimedia retrieval. Among these algorithms, Scale Invariant Feature Transform (SIFT) has been proven to be one of the most robust image feature extraction algorithm. However, SIFT algorithm is not only data intensive but also computation intensive. It takes about four seconds to process an image or a video frame on a general-purpose CPU, which is far from real-time processing requirement. Therefore, accelerating SIFT algorithm is urgently needed. As multi-core CPU becomes more and more popular in recent years, it is natural to employ computing power of multi-core CPU to accelerate SIFT. How to parallelize SIFT to take full use of multi-core capabilities becomes one of the core issues. This paper analyzes available parallelism in SIFT and implements various parallel SIFT algorithms to evaluate which is the most suitable for multi-core system. The final result shows that our parallel SIFT achieves a speedup of 10.46X on 16-core machine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bohn, R., Short, J.: How much information? 2009, report on american consumers, San Diego, CA (December 2009)
Marques, G.B.B.O., Mayron, L.M., Gamba, H.R.: An attention-driven model for grouping similar images with image retrieval applications. EURASIP J. of Applied Signal Processing 2007(1), 116 (2007)
Smeulders, A.W.M., Member, S., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)
Lowe, D.G.: Object recognition from local scaleinvariant features. In: Computer Vision, vol. 2, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 404–417 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on PAMI 27(10), 1615–1630 (2005)
Mikolajczyk, K.: Local feature evaluation dataset, http://www.robots.ox.ac.uk/~vgg/research/affine/
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Tang, F., Gao, Y.: Fast near duplicate detection for personal image collections. ACM Multimedia, 701–704 (2009)
Wu, X., Ngo, C.-W., Li, J., Zhang, Y.: Localizing volumetric motion for action recognition in realistic videos. ACM Multimedia, 505–508 (2009)
Intel. Intel vtune performance analyzer, http://software.intel.com/en-us/intel-vtune/
ISO/IEC/JTC1/SC29/WG11, C.D.: 15938-3 MPEG-7 Multimedia Content Description Interface - Part 3. MPEG Document W3703 (2000)
Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image Indexing using Color Correlograms. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, pp. 762–768. IEEE Computer Society, Los Alamitos (1997)
Wu, P., Ro, Y.M., Won, C.S., Choi, Y.: Texture Descriptors in MPEG-7. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 21–28. Springer, Heidelberg (2001)
Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming. O’Reilly & Associates, Inc., Sebastopol (1996)
Wan,Y., Yuan, Q., Ji, S., He, L., Wang, Y.: Intel. Intel icc compiler, http://software.intel.com/en-us/intel-compilers/
Wang.: A survey of the image copy detection. In: IEEE Conference on Cybernetics and Intelligent Systems (2008)
Berrani, S., Amsaleg, L., Gros, P.: Robust content-based image searches for copyright protection. In: Proceedings of ACM Workshop on Multimedia Databases (2003)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, pp. 511–518 (2001)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. Technical Report CVR-TR-2004-01, Beckman Institute, University of Illinois (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(27), 1615–1630 (2005)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)
Feng, H., Li, E., Chen, Y., Zhang, Y.: Parallelization and characterization of sift on multi-core systems. In: IISWC 2008, pp. 14–23 (2008)
Zhang, Q., Chen, Y., Zhang, Y., Xu, Y.: Sift implementation and optimization for multi-core systems. In: Parallel and Distributed Processingv (IPDPS), pp. 1–8 (2008)
Sinha, S., Frahm, J.-M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. In: Machine Vision and Applications (2007)
Heymann, S., Muller, K., Smolic, A., Froehlich, B., Wiegand, T.: SIFT implementation and optimization for general-purpose GPU. In: WSCG (2007)
Warn, S., Emeneker, W., Cothren, J., Apon, A.: Accelerating SIFT on Parallel Architectures. In: Cluster Computing and Workshops(CLUSTER), pp. 1–4 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, D., Liu, L., Zhu, F., Zhang, W. (2011). A Parallel Analysis on Scale Invariant Feature Transform (SIFT) Algorithm. In: Temam, O., Yew, PC., Zang, B. (eds) Advanced Parallel Processing Technologies. APPT 2011. Lecture Notes in Computer Science, vol 6965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24151-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-24151-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24150-5
Online ISBN: 978-3-642-24151-2
eBook Packages: Computer ScienceComputer Science (R0)