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Abstract. Using Error Detection Code (EDC) and Error Correction Code (ECC) is a noteworthy 
way to increase cache memories robustness against soft errors. EDC enables detecting errors in 
cache memory while ECC is used to correct erroneous cache blocks. ECCs are often costly as they 
impose considerable area and energy overhead on cache memory. Reducing this overhead has 
been the subject of many studies. In particular, a previous study has suggested mapping ECC to 
the main memory at the expense of high cache traffic and energy. A major source of this 
excessive traffic and energy is the high frequency of cache writes. In this work, we show that a 
significant portion of cache writes are silent, i.e., they write the same data already existing. We 
build on this observation and introduce Traffic-aware ECC (or simply TCC). TCC detects silent 
writes by an efficient mechanism. Once such writes are detected updating their ECC is avoided 
effectively reducing L2 cache traffic and access frequency. Using our solution, we reduce L2 
cache access frequency by 8% while maintaining performance. We reduce L2 cache dynamic and 
overall cache energy by up to 32% and 8%, respectively. Furthermore, TCC reduces L2 cache 
miss rate by 3%. 

1 Introduction 

Memory reliability impacts the overall processor reliability significantly. This is due to the fact that an error 

in memory can easily propagate to other system elements and influence both data results and control flow. Soft 

errors, i.e. errors which are transient and change one or more bit values transiently (unlike permanent errors 

which are steady forever), are the main cause of errors in memory [12, 13]. Cache memories deserve special 

attention as they are the closest memory layer to the CPU, effectively having the most data exchange. 

Consequently, any error occurring in the cache memories is likely to propagate into the CPU structures. 

Moreover, cache memories use SRAM cells and are therefore very susceptible to errors (unlike main memory 

which uses DRAM cells [14]). Soft error probability has remained the same for SRAM cells [15, 16, 17, 18]. 

Meantime, cache sizes continue to grow increasing the overall likelihood of soft error in cache memories. 

In order to protect the system against such errors, error checking and correcting schemes are used to prevent 

errors from propagating to other parts of system. Exploiting Errors Detection Codes (EDCs) and Error 

Correction Codes (ECCs) is one way to achieve error protection. EDCs are often low cost codes such as parity 

bits capable of detecting single or multiple bit flips in a cache block. Conventionally, EDCs are used to check 

data integrity on each cache read operation. Compared to EDCs, ECCs (e.g., hamming code) come with higher 

complexity (and hence overhead) as they require error correction capabilities. Previous work has suggested 

many solutions to reduce ECC overhead [1, 2, 3, 4, 5, 6]. In particular, a previous study [1], has suggested 

mapping ECC to the main memory as regular data, referred to also as MMECC. MMECC reduces area and 

leakage energy overhead at the cost of low performance degradation. On the negative side, MMECC increases 

both cache traffic and dynamic energy as it increases the frequency of cache write operations (as it writes the 

ECC value using an extra cache access). 

In this paper, we extend previous work and use the observation that a considerable portion of cache writes 

write the data already existing. We refer to this group of writes as silent writes. Conventionally, cache blocks 

written by a silent write are treated as dirty blocks. This imposes additional unnecessary overhead calculating, 

updating and rewriting ECC values. As we show in this work detecting and avoiding these redundant 

computations can save energy and traffic in cache memory. To this end, we introduce Low-Power Traffic-

Aware ECC (TCC). By detecting and skipping conventional steps for silent writes, TCC reduces both cache 
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traffic and energy consumption. TCC relies on an efficient and effective mechanism to detect silent writes. This 

is done by comparing low cost signatures associated with each block to find out if a write is in fact silent. To 

minimize signature cost, we use the already existing parity code as block signature and show that 98% of the 

non-silent writes can be detected by using parity. In particular we make the following contributions: 

• We show that a significant portion of cache writes to the L2 cache are silent writes. We show that in the case 

of silent write, writing the cache block and updating the associated ECC can be avoided. 

• We introduce an efficient mechanism to detect silent writes by using the already existing parity code as block 

signature. We show that 98% of non-silent writes can be detected by using parity code as signature. 

• By skipping ECC calculation and update for silent writes, we reduce cache access frequency (max: 32%), 

dynamic energy (max: 32%) and miss rate (max: 3%). 

The rest of this paper is organized as follows: Section 2 explains related work. Section 3 describes 

background information including decoupled EDC and ECC. We review our motivating observations in Section 

4. In Section 5 we present TCC in more details. We report methodology and results in Section 6 and 7 

respectively. Finally in Section 8, we offer concluding remarks.  

2 Related Work 

Li [5] proposed ECC power gating for clean lines to reduce leakage power. Sadler and Sorin [4] used 

punctured error codes instead of conventional hamming codes for error detection and correction. Punctured code 

can be separated to EDC and ECC parts. In order to save cache read latency, they proposed decoupling EDC 

from ECC and suggested using a dedicated cache called Punctured ECC Recovery Cache (PERC) to hold the 

ECC part of the code. Meantime, EDC is held in the data cache. In order to reduce area and power, Kim [6] 

suggested using up to one dirty line per cache set, storing ECC only for this single dirty line.  

Yoon and Erez [1] suggested mapping ECC to the memory system (MMECC), instead of storing it at the end 

of the cache line. MMECC saves cache space by writing ECC in the memory space. This does not impact 

memory traffic significantly as ECC is only updated when necessary. Meantime, MMECE comes with an 

additional space overhead in the last cache level. Furthermore, MMECC increases the traffic of the last level 

cache as a result of regular ECC updates. These consequences could potentially have a negative impact on both 

power and performance. In this work we show that taking application behavior into account can reduce the 

cache traffic overhead associated with MMECC. Lepak and Lipasti [7] introduced the concept of silent stores as 

store instructions writing the same value already stored. Zhang [2] proposed In-Cache Replication (ICR) for L1 

data caches. ICR uses existing cache space to hold replicas of cache blocks. Kim and Somani [3] proposed 

parity caching, shadow checking and selective checking. 

Protecting the most error prone blocks (as [5] and [6] do) increases cache reliability. This level of protection, 

however, may not be sufficient for highly reliable and critical applications. TCC does not compromise error 

correction capability as it stores ECC for all dirty cache blocks uniformly while imposing little area, power and 

bandwidth overhead. We reduce both the area and the leakage energy overhead associated with ECC by storing 

the required information in the memory (similar to [1]) rather than a dedicated cache (as [4], [5] and [6] do). 

Meantime, we improve MMECC [1] by reducing the associated traffic overhead by limiting the L2 cache writes 

to the writes that are not silent. 

3 Decoupled EDC and ECC Background  

On a cache read operation, EDC is read and calculated to check block integrity to assure correctness. Cache 

read operations are on the critical path and occur frequently. Therefore, implementing EDC operations 

efficiently would enhance both the overall performance and energy. While hamming code has proven to be a 

viable solution to detect and correct errors in caches, it suffers from significant overhead. Consequently, 

designers have preferred fast and low demanding error detection mechanisms like parity. It is important to note 

that ECC is not needed in write-through caches, as there is always an intact copy of the data block available in 

the upper memory level. In the case of a write-back cache, however, the upper level only includes a copy of the 

clean data, making dirty blocks that are not yet evicted, vulnerable to errors. To protect write-back caches 

against errors we use ECC if EDC shows an error. Since correction needs a more powerful code, write-back 
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caches exploit two different codes, a low-power and low-latency code (like parity) for error detection, and a 

powerful ECC for correction (like hamming). EDC and ECC are calculated and stored on a dirty write-back into 

the cache. When EDC detects an error, if the cache line is clean the correct block is read from the higher 

memory level. Otherwise, ECC is used to produce the correct cache block. One way to store EDC and ECC is to 

place them at the end of the cache line. This, while easy for EDC, is not affordable for ECC as ECC comes with 

significant memory overhead. For example, a cache using a single error correction hamming code requires eight 

bytes of overhead for a 64-byte block. The associated increase in the cache line size increases the cache area and 

energy (both dynamic and leakage). 

4 Motivation 

We are motivated by the fact that a significant portion of consecutive writes on the L2 and L1 caches are 

silent, i.e., they rewrite the same block written previously, consuming energy and bandwidth without 

contributing to performance. As presented, on average, silent writes account for 37% of L2 cache writes. In Fig. 

1 we report the share of silent writes (see Section 6 for methodology). In addition, and in a system using 

MMECC, silent writes result in calculating and rewriting already stored parity and hamming bits hence 

furthermore wasting activity. Identifying and avoiding this redundant activity improves energy efficiency in two 

ways.  

─ Since previous and new ECCs are equal, calculating the hamming code can be eliminated for silent writes. 

Note that the XOR operations required to calculate the hamming code are four times more than the XOR 

operations needed for block comparison. 

─ In methods like Memory Mapped ECC [1], ECC should be written to memory or data cache on each cache 

write operation. This could be avoided for silent writes, reducing cache access activity. 

 

 

 

Fig. 1. Silent write frequency for L2 cache. 

5 TCC 

MMECC requires frequent cache write operations as it writes the ECC associated with each cache block 

either to the memory or to the cache upon each data cache write. This is unnecessary as cache writes rewrite the 

same data frequently as presented in Section 4. We take advantage of this observation and suggest Traffic-

Aware ECC, or simply TCC. TCC uses application behavior to reduce cache/memory traffic and eliminate a 

significant share of the hamming calculations and cache updates performed by conventional ECC solutions.  

TCC is applied to a memory system already decoupling error detection from error correction [4] and utilizing 

memory mapping [1] (requiring treating ECC as a regular data). TCC uses interleaved parity as EDC. ECC is 

computed and written upon a cache write-back from L1 to L2. Parity comes with one byte overhead and is 

stored at the end of each cache line in TCC. Hamming, on the other hand, has an eight byte overhead per 64-

byte size cache line and is stored in the memory.  

0%

20%

40%

60%

80%

100%

ap
p
lu

b
zi

p

ar
t

g
zi

p

v
p
r

tw
o

lf

p
re

d
at

o
r

p
ar

se
r

m
es

a

m
cf

lu
ca

s

g
li

m
m

er

g
cc

g
al

g
el

fm
a3

d

eq
u
ak

e

cr
af

ty

cl
as

tl
aw

am
m

p

av
er

ag
e

S
il

en
t 

S
to

re
 R

a
te



4  

 

TCC allocates an address location to the ECCs and maps the ECC of each cache block to a memory address. 

To accommodate ECC, and similar to MMECC, TCC stores 8 bytes of ECC as the block-ECC for the 64-byte 

cache block used in this study. We group eight block-ECCs to form a memory block of 64 bytes. We refer to the 

cache blocks associated with each of the block-ECCs stored in one memory block as adjacent blocks. In an 8-

way set associative cache, cache lines in the eight consecutive cache sets with the same way number form the 

adjacent blocks. For instance, cache lines in the way 0 of set0 to set7, are adjacent blocks. 

In the case of cache writes, if the ECC line is cached, the new ECC should be stored using an extra cache 

write. Otherwise, a cache block is assigned to the associated ECC. In case one or more adjacent blocks are dirty, 

their block-ECC has already been saved in the memory (as we just save ECC for dirty cache blocks). Here we 

read the already stored ECC block from memory. 

5.1 Block Comparison 

Detecting silent writes needs comparing each ready-to-write block to the old block. This requires reading the 

old block dissipating power comparable to that of a cache write. For TCC to achieve its goal, it is important to 

perform this comparison efficiently as suggested in the next section.  

Detecting Silent Writes. To reduce the overhead associated with silent write detection, we exploit low cost 

small signatures (explained in the next section) associated with each block rather than comparing the entire 

block addresses. To this end we use a small dedicated cache, referred to as the signature cache. The number of 

signature cache lines is the same as the L1 cache and the line size is one byte. When a data block is written from 

L2 to L1, its signature is calculated and saved in the signature cache. 

At the time of a write back from L1 to L2, the signature of the ready-to-write block is calculated and 

compared to the old signature saved in the signature cache. If different, the write is not a silent write (i.e. the 

new and old data blocks are not the same), hence the ready-to-write block should be written to the L2 cache, and 

the ECC should be computed and rewritten. If the signatures are equal, there is still a chance that the two blocks 

are unequal. Therefore, TCC takes an extra step comparing the old block (which is read from the L2 cache) to 

the ready-to-write block. If equal, the write operation is a silent write and no further action is required, as both 

blocks and their associated ECCs are equal. Otherwise, the write is not silent. Therefore, the new data block 

should be written to the L2 cache, and the ECC must be computed and written following the conventional 

approach. The hardware overhead of comparing the old block to the ready-to-write block is a 64-bit comparator. 

We take the power overhead associated with this comparator in the energy results presented in Section 7.3. In 

the next section we present how the signature is calculated. 

Parity as Signature. The interleaved parity code, which is used for error detection, should be calculated and 

saved for each cache block. We use the already existing parity bits as signature bits. Using parity as signature 

has two benefits: a) we no longer need extra effort to calculate signature b) we no longer need extra storage for 

signature as parity is already stored in the cache block. Fig. 2 shows the steps TCC takes during L2 cache read 

and writes. 
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Fig. 2. L2 cache read and write mechanisms used in a TCC-enhanced system. (Note that labels with the same number and 

color happen in parallel. The dashed lines show the control signal) a: L2 cache read operation 1) read the data block and the 

associated parity/signature. Calculate the data block parity independently and compare to the fetched parity. 2) (Lighter 

label) in the case of a parity match, the block is error-free. Write the block to the lower level cache. 2) (Darker labels) parity 

mismatch. Check if the block is dirty or not. 3) (Darker label) block is not dirty. Read the correct data from the main 

memory. 3) (Lighter label) block is dirty. Check the cache for the ECC. 4) (Lighter label) ECC is cached. Read the ECC 

from cache and correct the data block. 4) (Darker label) ECC is not cached. Read the ECC from the main memory and 

correct the block. b: L2 cache write operation. 1) Read the data block and the associated parity/signature. Calculate its parity 

and compare to the signature 2) (Darker labels) signature mismatch. So this is a non-silent write, i.e. the ready-to-write block 

is not equal the previously stored block. Calculate the ECC; write the block and ECC to the cache. 2) (Lighter labels) 

signature match. Compare current L2 block to the ready-to-write block. If they match, this is a silent write and the write 

operation is done. 3) (Darker labels) block mismatch. So this is a non-silent write. Calculate the block ECC; write the block 

and ECC to the cache. 

 

Our study shows that about 98% of the time, unequal data blocks come with unequal associated signatures 

(i.e., 98% of the time comparing signatures is enough to find out that a write is not silent). Meantime, in 2% of 

the cases signatures are equal while their associated blocks are different. In this work we propose using parity as 

signature assuming that the cache architecture holds parity as EDC for each block while using SEC-DED 

hamming code as ECC. Meantime, our solution can be used for any ECC type which uses parity as EDC. In the 

event when parity is not used as EDC, other appropriate data representations could be used as signature instead 

of parity.  

6 Methodology 

We use Simplescalar 2 [8] to evaluate our solutions. We execute 500M representative instructions from 

SPEC2000 [9] using SimPoint [11]. In order to estimate cache dynamic and leakage energy, we use CACTI 6 

[10] tool. Table 1 shows the system configuration used in this study. We assume that both L2 and L1 caches 

have same block size [20, 21, 22]. Note that we take into account all extra tasks contributing to energy 

consumption in TCC and MMECC when comparing to a conventional processor. These tasks include: 

• Signature read and write 

• Signature comparison 

• Data block read and write 

• Data block comparison 
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In the conventional method, ECC is stored along the data block, so the length of the data block is more than 

TCC. Moreover, we assume that parity is stored at the end of the cache block and is read by each cache read 

operation. We calculated the cost of both data and signature read and update using CACTI tool. Meantime, we 

use synopsys HSPICE tool [19] for 45nm technology to estimate block and signature comparison cost. 

Table 1: CPU Configuration 

Processor component Value  

Integer Functional Unit 4 ALU, 1 Multiplier/Divider 

Floating Point Functional Unit 4 ALU, 1 Multiplier/Divider 

Instruction Fetch Queue/LSQ/RUU 

size 
4/32 / 64 Instructions 

Decode/Issue/Commit Width 4 / 4 / 4 instructions 

Memory Latency First Chunk 512 cycle/Inter Chunk 128 cycle 

Memory System Ports (to CPU) 2 

Branch Predictor 

Comb: 1024 meta size,  

Bimodal: 2048, 

2level: 8 bits history and 1024 arra 

BTB: 512, 4-way 

Mis-prediction Latency 3 cycle 

Level 1 Instruction Cache 
32KB / 3cycles access latency / 4 ways / 64 bytes per block / 

LRU 

Level 1 Data Cache 64KB/3cycles access latency / 4 ways / 64 bytes per block / LRU 

Level 2 Instruction Cache 
256KB / 12cycles access latency / 4 ways / 64 bytes per block / 

LRU 

Level 2 Data Cache 1MB/12cycles access latency / 8 ways / 64 bytes per block / LRU 

7 Results 

In this section we report experimental results. We report performance in Section 7.1. We present TCC impact 

on cache access frequency in Section 7.2. In Section 7.3 we report energy consumption. Finally, we present how 

TCC impacts cache miss rate in 7.4. To provide better understanding we compare TCC to MMECC [1] and a 

conventional system.  

7.1 Performance 

In Fig. 3 we report performance for TCC and MMECC compared to a conventional system storing ECC 

entirely in a dedicated cache array space. As presented in Fig. 3, TCC shows competitive performance 

compared to MMECC. While both methods show slight performance loss compared to the conventional system, 

TCC seems to better maintain performance. On average, TCC and MMECC show 0.07% and 0.06% 

performance loss compared to the conventional system. This performance loss has two reasons. First, unlike the 

conventional system that stores both ECC and the cache block in the same cache access, MMECC and TCC 

require an additional cache access to store ECC. Both MMECC and TCC store the data, compute the ECC and 

then store the ECC in the cache space. This results in extra traffic which can impact performance. Second, we 

assume that MMECC and TCC use cache space to store ECC while the conventional system stores ECC in a 

separate array. Consequently, TCC and MMECC increase cache miss rate slightly (see Section 7.4) which has a 

negative impact on performance. 
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Fig. 3. Relative Performance 

7.2 Cache Access 

In Fig. 4 we report the number of L2 data cache accesses for TCC and MMECC compared to the 

conventional system. On average, TCC and MMECC show 21% and 32% cache access frequency increase 

compared to the conventional system respectively. As TCC updates ECC by an extra L2 cache access (except 

when the new block is equal to previous one), its L2 access is higher than conventional system. TCC shows less 

L2 access frequency compared to MMECC as we avoid writing the data block and the associated ECC in the 

case of a silent write. On average, TCC shows 8% (up to 32%) L2 access reduction compared to MMECC. The 

amount of access frequency difference between TCC and MMECC depends on how often silent writes occur. 

For example in equake, bzip and glimmer, TCC and MMECC accesses are almost equal. This is consistent with 

Fig. 1 where these three benchmarks show a low rate of silent writes. On the other hand, TCC accesses in 

clastlaw and mcf is much less than MMECC as silent write frequency is high for these two benchmarks. 

 

 

Fig. 4. L2 cache accesses frequency. 

7.3 Energy  

In this section we report energy consumption for L2 data cache for TCC and MMECC compared to the 

conventional system. We report dynamic and total energy in two following sections respectively. 

Dynamic Energy. In Fig. 5 we report L2 dynamic energy consumption for TCC and MMECE compared to the 

conventional system. MMECC shows an average increase of 8% (max: 22%) in energy consumption. Meantime, 

TCC shows an average reduction of 1% (max: 19%) and 9% (max: 32%) compared to the conventional and 

MMECC respectively. This is explained as follows. As shown in Section 7.2 MMECC shows higher cache 
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access compared to the conventional system increasing cache dynamic energy. For TCC, L2 access frequency is 

higher than the conventional method. However, the conventional method stores ECC at the end of each cache 

block increasing cache energy consumption per access. On the other hand, TCC’s cache access frequency is 

lower than MMECC. Therefore, TCC consumes less dynamic energy compared to MMECC. 

 

 

Fig. 5. Relative L2 data cache dynamic energy. 

Total Energy. In Fig. 6 we show L2 data cache total energy consumption for TCC and MMECC compared to 

the conventional system. We measure total energy as the summation of leakage and dynamic energy. As TCC 

and MMECC do not use a dedicated cache space to store ECC, they show 13% less leakage energy consumption 

compared to the conventional system. Meantime, TCC shows only 0.06% higher leakage energy compared to 

MMECC as TCC uses extra space to store signatures. Since TCC has low dynamic energy consumption (see 

Dynamic Energy Section), it shows 1% (up to 8%) and 12% (up to 13%) reduction in L2 data cache total energy 

compared to MMECC and conventional system respectively. 

 

 

Fig. 6. Relative L2 data cache total energy consumption 

7.4 Miss Rate 

In Fig. 7 we report L2 data cache miss rate for TCC and MMECC compared to the conventional system. TCC 

and MMECC show higher miss rate compared to the conventional method as they use some cache space to store 

ECC rather than using a dedicated cache. TCC shows 0.15% (up to 3%) less cache miss rate compared to 

MMECC. This reduction could be explained as follows. Both TCC and MMECC store ECC only for dirty cache 

lines. This results in an increase in the cache space occupied by ECC as the number of dirty cache lines 

increases. Meantime, TCC treats silent writes as clean writes as these writes do not change the value of the 

cache line. As TCC does not save ECC for these cache lines, ECC occupies less cache space for TCC compared 
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to MMECC. TCC’s miss rate is 0.7% (up to 3%) higher than the conventional system. MMECC’s miss rate is 

0.85% (up to 6%) more than conventional system. Note that the conventional system uses a dedicated cache 

array to store ECC. 

 

 

Fig. 7. L2 data cache miss rate 

7.5 L1 Cache Size and Performance 

In Fig. 8 we show how variations in L1 data cache size impacts performance for TCC and MMECC 

compared to the conventional system. TCC shows better performance compared to MMECC for both 32KB and 

128KB L1 data cache sizes.  

 

 

Fig. 8. Performance sensitivity to L1 data cache size. 

 

7.6 L1 Cache Size and Total Energy 

In Fig. 9 we report how variations in L1 data cache size impacts total energy for TCC and MMECC 

compared to the conventional system. For all L1 data cache sizes, TCC shows lower total energy compared to 

both MMECC and conventional system. 
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Fig. 9. Total energy sensitivity to L1 data cache size. 

8 Conclusion  

We showed that a significant portion of cache writes are silent, i.e., they write the data already existing in the 

cache. Based on this observation, we proposed Low-Power Traffic-Aware ECC to reduce cache traffic and 

access frequency. To detect silent writes, we use parity bits as signature bits and propose an efficient detection 

method. TCC avoids cache block write as well as ECC calculation and ECC write for silent writes. We consider 

the overhead of silent write detection in our experimental results and show that by taking silent writes into 

account, we improve both cache traffic and energy while maintaining performance. 
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