Skip to main content

Abstract

In embedded control applications, control-rate and energy-consumption are two critical design issues. This paper presents a series of high-speed and low-power finite-word-length PID controllers based on a new recursive multiplication algorithm. Compared to published results into the same conditions, savings of 431% and 20% are respectively obtained in terms of control-rate and dynamic power consumption. In addition, the new multiplication algorithm generates scalable PID structures that can be tailored to the desired performance and power budget. All PIDs are implemented at RTL level as technology-independent reusable IP-cores. They are reconfigurable according to two compile-time constants: set-point word-length and latency.

This work was supported by “Centre de Développement des Technologies Avancées” (CDTA), Algiers, Algeria, in collaboration with FEMTO-ST institute, Besançon, France.France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Åström, K., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. The Instrument Society of America, Research Triangle Park, NC, USA (1995) ISBN: 1-55617-516-7, Copyright

    Google Scholar 

  2. Zhao, W., et al.: FPGA Implementation of Closed-Loop Control Systems for Small-Scale Robot. In: Proceedings of the IEEE 12th International on Advanced Robotics (ICAR), pp. 70–77 (2005)

    Google Scholar 

  3. Samet, L., et al.: A Digital PID Controller for Real-Time and Multi-Loop Control: a Comparative Study. In: Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (ICECS), vol. 1, pp. 291–296 (1998)

    Google Scholar 

  4. Fong, Y., Moallem, M., Wang, W.: Design and Implementation of Modular FPGA-Based PID Controllers. IEEE Trans. on Industrial Electronics 54(4), 1898–1906 (2007)

    Article  Google Scholar 

  5. Wittenmark, B., Astrom, K.J., Arzenin, K.E.: Computer control: An overview. Technical Report of Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden (April 2003), http://www.control.lth.se/kursdr/ifac.pdf

  6. Sam, H., Gupta, A.: A Generalized Multibit Recoding of Two’s Complement Binary Numbers and its Proof with Application in Multiplier Implementation. IEEE Trans. on Computers 39(8) (August 1990)

    Google Scholar 

  7. Lamberti, F.: Reducing the Computation Time in (Short Bit-Width) Two’s Complement Multiplier. IEEE Trans. on Computers 60(2), 148–156 (2011)

    Article  MathSciNet  Google Scholar 

  8. Kuang, S.R., Wang, J.P., Guo, C.Y.: Modified Booth Multipliers with a Regular Partial Product Array. IEEE Trans. on Circuit and Systems II, Express Brief 56(5) (May 2009)

    Google Scholar 

  9. Kang, J.Y., Gaudiot, J.L.: A Simple High-Speed Multiplier Design. IEEE Trans. on Computers 55(10) (October 2006)

    Google Scholar 

  10. Crookes, D., Jiang, M.: Using Signed Digit Arithmetic for Low-Power Multiplication. Electronics Letters 43(11) (May 2007)

    Google Scholar 

  11. Seidel, P.M., McFearin, L.D., Matula, D.W.: Secondary Radix Recodings for Higher Radix Multipliers. IEEE Trans. on Computers 54(2) (February 2005)

    Google Scholar 

  12. North, R.C., Ku, W.H.: β-Bit Serial/Parallel Multipliers. Journal of VLSI Signal Processing 2, 219–233 (1991)

    Article  Google Scholar 

  13. Rubinfield, L.P.: A Proof of the Modified Booth Algorithm for Multiplication. IEEE Trans. On Computers C-24(10), 1014–1015 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henlin, D.A., Fertsch, M.T., Mazin, M., Lewis, E.T.: A 16 bit x 16 bit Pipelined Multiplier Marcrocell. IEEE Journal of Solid-State Circuits SC-20(2), 542–547 (1985)

    Article  Google Scholar 

  15. Kelly, J.S., et al.: Design and Implementation of Digital Controllers for Smart Structures Using Field Programmable Gate Arrays. Smart Material Structure Journal, PII: S0964-1726 (97) 87085-1, 559–572 (1997); printed in the UK

    Google Scholar 

  16. Shang, L., Kaviani, A.S., Bathala, K.: Dynamic Power Consumption in Virtex-II FPGA Family. In: Proceedings of FPGA Conference, Monterey, California, USA, pp. 157–164 (February 2002)

    Google Scholar 

  17. Xilinx Inc.: Virtex6 FPGA: Satisfying the Insatiable Demand for Higher Bandwidth. PN 2403, Printed in the USA, Copyright (2009), www.xilinx.com/publications/prod_mktg/Virtex6_Product_Brief.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oudjida, A.K., Chaillet, N., Liacha, A., Hamerlain, M., Berrandjia, M.L. (2011). High-Speed and Low-Power PID Structures for Embedded Applications. In: Ayala, J.L., García-Cámara, B., Prieto, M., Ruggiero, M., Sicard, G. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation. PATMOS 2011. Lecture Notes in Computer Science, vol 6951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24154-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24154-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24153-6

  • Online ISBN: 978-3-642-24154-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics