Skip to main content

Public Discussion Must Be Back and Forth in Secure Message Transmission

  • Conference paper
Information Security and Cryptology - ICISC 2010 (ICISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6829))

Included in the following conference series:

  • 1166 Accesses

Abstract

Secure message transmission (SMT) is a two-party protocol between a sender and a receiver over a network in which the sender and the receiver are connected by n disjoint channels and t out of n channels can be controlled by an adaptive adversary with unlimited computational resources. If a public discussion channel is available to the sender and the receiver to communicate with each other then a secure and reliable communication is possible even when n ≥ t + 1. The round complexity is one of the important measures for the efficiency for SMT. In this paper, we revisit the optimality and the impossibility for SMT with public discussion and discuss the limitation of SMT with the “unidirectional” public channel, where either the sender or the receiver can invoke the public channel, and show that the “bidirectional” public channel is necessary for SMT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, T.: Almost secure 1-round message transmission scheme with polynomial-time message decryption. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 2–13. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 394–408. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  4. Berman, P., Garay, J.A.: Fast consensus in networks of bounded degree. Distributed Computing 2(7), 62–73 (1993)

    MATH  Google Scholar 

  5. Chandran, N., Garay, J.A., Ostrovsky, R.: Improved fault tolerance and secure computation on sparse networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010 (Part 2). LNCS, vol. 6199, pp. 249–260. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proc. 20th Annual ACM Symposium on Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  7. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. IEEE Trans. Information Theory 54(6), 2582–2595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fitzi, M., Franklin, M.K., Garay, J.A., Simhadri, H.V.: Towards optimal and efficient perfectly message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Franklin, M.K., Wright, R.N.: Secure communication in minimal connectivity models. J. Cryptology 13(1), 9–30 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Garay, J.A., Givens, C., Ostrovsky, R.: Secure message transmission with small public discussion. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 177–196. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. IEEE Transactions on Information Theory 55(11), 5223–5232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. IEICE Trans. Fundamentals of Electronics Communications and Computer Sciences E92-A(1), 105–112 (2009)

    Article  MATH  Google Scholar 

  16. Rabin, T., Ben-Or, M.: Verifiable secrete sharing and multiparty protocols with honest majority. In: Proc. 21st Annual ACM Symposium on Theory of Computing, pp. 73–85 (1989)

    Google Scholar 

  17. Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. Information and Computation 126(1), 53–61 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi, H., Jiang, S., Safavi-Naini, R., Tuhin, M.A.: Optimal secure message transmission by public discussion. In: Proc. IEEE International Symposium on Information Theory 2009, pp. 1313–1317 (2009)

    Google Scholar 

  19. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Srinathan, K., Patra, A., Choudhary, A., Rangan, C.P.: Probabilistic perfectly reliable and secure message transmission — possibility, feasibility and optimality. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 101–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Upfal, E.: Tolerating a linear number of faults in networks of bounded degree. Information and Computation 115(2), 312–320 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wegman, M., Carter, J.: New hash functions and their use in authentication and set equality. J. Computer and System Sciences 22(2), 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koshiba, T., Sawada, S. (2011). Public Discussion Must Be Back and Forth in Secure Message Transmission. In: Rhee, KH., Nyang, D. (eds) Information Security and Cryptology - ICISC 2010. ICISC 2010. Lecture Notes in Computer Science, vol 6829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24209-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24209-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24208-3

  • Online ISBN: 978-3-642-24209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics