Skip to main content

Optimization of Infectious Medical Waste Collection Using RFID

  • Conference paper
Computational Logistics (ICCL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6971))

Included in the following conference series:

Abstract

In this paper we consider the collection of infectious medical waste, produced by patients in self-treatment and stored at pharmacies. The problem is formulated as a collector-managed inventory routing problem, encompassing stochastic aspects, which are common in such problems. Social objectives, specifically the satisfaction of pharmacists and the local authority, as well as the minimization of public health risks, are considered for the real-world motivated inventory routing problem. To optimize the planning process for a predefined time horizon, we take advantage of radio frequency identification technologies. We design a tabu search based algorithm to optimize the determination of visit dates and corresponding vehicle routes. The suggested approach is tested on real-world data from the region of Provence-Alpes-Côte d’Azur, in France. The results for different waste collection scenarios are analyzed and compared in order to evaluate the performance of the proposed solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ak, A., Erera, A.L.: A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands. Transportation Science 41(2), 222–237 (2007)

    Article  Google Scholar 

  2. Baptista, S., Oliveira, R.C., Zuquete, E.: A period vehicle routing case study. European Journal of Operational Research 139(2), 220–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertazzi, L., Savelsbergh, M., Speranza, M.G.: Inventory routing. In: Golden, B., Raghvan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 49–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Campbell, A., Clarke, L., Kleywegt, A., Savelsbergh, M.: The inventory routing problem. Fleet Management and Logistics, 95–113 (1998)

    Google Scholar 

  5. Campbell, A., Clarke, L., Savelsbergh, M.: Inventory routing in practice. In: Toth, P., Vigo, D. (eds.) The vehicle routing problem. SIAM Monographes on Discrete Mathematics and Applications, pp. 309–330 (2002)

    Google Scholar 

  6. Campbell, A.M., Savelsbergh, M.W.P.: A decomposition approach for the inventory-routing problem. Transportation Science 38(4), 488–502 (2004)

    Article  Google Scholar 

  7. Christiansen, C.H., Lysgaard, J.: A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research Letters 35(6), 773–781 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a Large-Scale Traveling-Salesman Problem. Operations Research 2(4), 393–410 (1954)

    MathSciNet  Google Scholar 

  9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Federgruen, A., Simchi-Levi, D.: Analysis of vehicle routing and inventory-routing problems. Handbooks in Operations Research and Management Science 8, 297–373 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. European Journal of Operational Research 88(1), 3–12 (1996)

    Article  MATH  Google Scholar 

  12. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Operations Research 44(3), 469–477 (1996)

    Article  MATH  Google Scholar 

  13. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  14. Hjorring, C., Holt, J.: New optimality cuts for a single-vehicle stochastic routing problem. Annals of Operations Research 86, 569–584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kulcar, T.: Optimizing solid waste collection in Brussels. European Journal of Operational Research 90(1), 71–77 (1996)

    Article  MATH  Google Scholar 

  16. Laporte, G., Louveaux, F.: Solving stochastic routing problems with the integer L-shaped method. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics, pp. 159–167. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  17. Le Blanc, H.M., Van Krieken, M.G.C., Fleuren, H., Krikke, H.R.: Collector managed inventory, a proactive planning approach to the collection of liquids coming from end-of-life vehicles. Technical report (2004)

    Google Scholar 

  18. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations Research 37(11), 1886–1898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miyazaki, M., Imatoh, T., Une, H.: The treatment of infectious waste arising from home health and medical care services: Present situation in Japan. Waste Management 27, 130–134 (2007)

    Article  Google Scholar 

  21. Mourao, M., Almeida, M.T.: Lower-bounding and heuristic methods for a refuse collection vehicle routing problem. European Journal of Operational Research 121(2), 420–434 (2000)

    Article  MATH  Google Scholar 

  22. Nuortio, T., et al.: Improved route planning and scheduling of waste collection and transport. Expert Systems with Applications 30(2), 223–232 (2006)

    Article  Google Scholar 

  23. Rei, W., Gendreau, M., Soriano, P.: A hybrid Monte Carlo local branching algorithm for the single vehicle routing problem with stochastic demands. Transportation Science 44(1), 136–146 (2010)

    Article  Google Scholar 

  24. Shih, L., Chang, H.: A routing and scheduling system for infectious waste collection. Environmental Modeling and Assessment 6(4), 261–269 (2001)

    Article  MathSciNet  Google Scholar 

  25. Solyali, O., Cordeau, J.F., Laporte, G.: Robust Inventory Routing under Demand Uncertainty. Technical report (2010)

    Google Scholar 

  26. Teixeira, J., Antunes, A.P., de Sousa, J.P.: Recyclable waste collection planning–a case study. European Journal of Operational Research 158(3), 543–554 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tung, D.V., Pinnoi, A.: Vehicle routing-scheduling for waste collection in Hanoi. European Journal of Operational Research 125(3), 449–468 (2000)

    Article  MATH  Google Scholar 

  28. Yu, Y., Chen, H., Chu, F.: A new model and hybrid approach for large scale inventory routing problems. European Journal of Operational Research 189(3), 1022–1040 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nolz, P.C., Absi, N., Feillet, D. (2011). Optimization of Infectious Medical Waste Collection Using RFID. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds) Computational Logistics. ICCL 2011. Lecture Notes in Computer Science, vol 6971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24264-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24264-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24263-2

  • Online ISBN: 978-3-642-24264-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics