Skip to main content

Minimum Attention Controller Synthesis for Omega-Regular Objectives

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6919))

Abstract

A controller for a discrete game with ω-regular objectives requires attention if, intuitively, it requires measuring the state and switching from the current control action. Minimum attention controllers are preferable in modern shared implementations of cyber-physical systems because they produce the least burden on system resources such as processor time or communication bandwidth. We give algorithms to compute minimum attention controllers for ω-regular objectives in imperfect information discrete two-player games. We show a polynomial-time reduction from minimum attention controller synthesis to synthesis of controllers for mean-payoff parity objectives in games of incomplete information. This gives an optimal EXPTIME-complete synthesis algorithm. We show that the minimum attention controller problem is decidable for infinite state systems with finite bisimulation quotients. In particular, the problem is decidable for timed and rectangular automata.

This research was funded in part by the US National Science Foundation grants CCF-0546170, CNS-0702881, DARPA grant HR0011-09-1-0037, Austrian Science Fund (FWF) NFN Grant S11407-N23 (RiSE), and a Microsoft faculty fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anta, A., Tabuada, P.: On the minimum attention and anytime attention problems for nonlinear systems. In: CDC 2010. IEEE, Los Alamitos (2010)

    Google Scholar 

  3. Brockett, R.W.: Minimum attention control. In: CDC 1997. IEEE, Los Alamitos (1997)

    Google Scholar 

  4. Brockett, R.W.: Minimizing attention in a motion control context. In: CDC 2003. IEEE, Los Alamitos (2003)

    Google Scholar 

  5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the AMS 138, 295–311 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassez, F., Tripakis, S.: Fault diagnosis with static and dynamic observers. Fundam. Inform. 88(4), 497–540 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187. IEEE, Los Alamitos (2005)

    Google Scholar 

  9. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Controller synthesis with budget constraints. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 72–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)

    Google Scholar 

  11. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS 1991, pp. 368–377. IEEE, Los Alamitos (1991)

    Google Scholar 

  13. Girard, A.: Synthesis using approximately bisimilar abstractions: state-feedback controllers for safety specifications. In: HSCC, pp. 111–120. ACM, New York (2010)

    Chapter  Google Scholar 

  14. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid systems. Discrete Event Dynamic Systems 18(2), 163–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC 1982, pp. 60–65. ACM, New York (1982)

    Google Scholar 

  16. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theoretical Computer Science 221, 369–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jobstmann, B.: Applications and Optimizations for LTL Synthesis. PhD thesis, Graz University of Technology (March 2007)

    Google Scholar 

  18. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  19. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Transactions on Automatic Control 53(1), 287–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic-based reactive mission and motion planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)

    Article  Google Scholar 

  21. Kupferman, O., Vardi, M.Y.: μ-calculus synthesis. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 497–507. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Advances in Temporal Logic, pp. 109–127. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  23. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS 2005: Foundations of Computer Science, pp. 531–540 (2005)

    Google Scholar 

  24. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  25. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazo, M., Davitian, A., Tabuada, P.: Pessoa: A tool for embedded controller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Montestruque, L., Antsaklis, P.: On the model-based control of networked systems. Automatica 39(10), 1837–1843 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)

    Google Scholar 

  29. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM, New York (1989)

    Google Scholar 

  30. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. Conference Series in Mathematics, vol. 13. American Mathematical Society, Providence (1969)

    MATH  Google Scholar 

  32. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. IEEE Transactions on Control Theory 77, 81–98 (1989)

    MATH  Google Scholar 

  33. Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29, 274–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  35. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond Words. ch.7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  36. Thorsley, D., Teneketzis, D.: Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems 17, 531–583 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Majumdar, R. (2011). Minimum Attention Controller Synthesis for Omega-Regular Objectives. In: Fahrenberg, U., Tripakis, S. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2011. Lecture Notes in Computer Science, vol 6919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24310-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24310-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24309-7

  • Online ISBN: 978-3-642-24310-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics