Skip to main content

Spatial Nonparametric Mixed-Effects Model with Spatial-Varying Coefficients for Analysis of Populations

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Abstract

Voxel-wise comparisons have been largely used in the analysis of populations to identify biomarkers for pathologies, disease progression, or to predict a treatment outcome. On the basis of a good interindividual spatial alignment, 3D maps are produced, allowing to localise regions where significant differences between groups exist. However, these techniques have received some criticism as they rely on conditions wich are not always met. Firstly, the results may be affected by misregistrations; secondly, the statistics behind the models assumes normally distributed data; finally, because of the size of the images, some strategies must be used to control for the rate of false detection. In this paper, we propose a spatial (3D) nonparametric mixed-effects model for population analysis. It overcomes some of the issues of classical voxel-based approaches, namely robustness to false positive rates, misregistrations and large variances between groups. Examples on numerical phantoms and real clinical data illustrate the feasiblity of the approach. An example of application within the development of voxel-wise predictive models of rectal toxicity in prostate cancer radiotherapy is presented. Results demonstrate an improved sensitivity and reliability for group analysis compared with standard voxel-wise methods and open the way for potential applications in computational anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friston, K.J., Holmes, A.P., et al.: Fr: Statistical Parametric Maps in Functional Imaging: A General LInear Approach. Human Brain Mapping, 189–210 (1995)

    Google Scholar 

  2. Ashburner, J., Friston, K.: Voxel-based morphometry–the methods. Neuroimag. 11(6 Pt 1), 805–821 (2000)

    Google Scholar 

  3. Yuan, Q., Zou, L., Chen, Q.: Voxel-based morphometric study of brain structure in alzheimer’s disease. Sichuan Da Xue Xue Bao Yi Xue Ban 39(3), 496–499 (2008)

    Google Scholar 

  4. Hua, X., Leow, A.D., et al.: Tensor-based morphometry as a neuroimaging biomarker for alzheimer’s disease: an mri study of 676 ad, mci, and normal subjects. Neuroimage 43(3), 458–469 (2008)

    Article  Google Scholar 

  5. Leow, A., Yanovsky, I., et al.: Statistical properties of jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Transactions on Medical Imaging 26(6), 822–832 (2007)

    Article  Google Scholar 

  6. Chételat, G., Desgranges, et al.: Direct voxel-based comparison between grey matter hypometabolism and atrophy in alzheimer’s disease. Brain 131(Pt 1), 60–71 (2008)

    Google Scholar 

  7. Desgranges, B., Matuszewski, et al.: Anatomical and functional alterations in semantic dementia: a voxel-based mri and pet study. Neurobiol. Aging 28(12), 1904–1913 (2007)

    Article  Google Scholar 

  8. Friston, K.J., Holmes, A.P., et al.: Analysis of fMRI Time-Series Revisited. NeuroImage 2, 45–53 (1995)

    Article  Google Scholar 

  9. Kupchak, C., Battista, J., Dyk, J.V.: Experience-driven dose-volume histogram maps of NTCP risk as an aid for radiation treatment plan selection and optimization. Med. Phys. 35(1), 333–343 (2008)

    Article  Google Scholar 

  10. Heemsbergen, W.D., Al-Mamgani, et al.: Urinary obstruction in prostate cancer patients from the dutch trial (68 gy vs. 78 gy): Relationships with local dose, acute effects, and baseline characteristics. Int. J. Radiat. Oncol. Biol. Phys. (January 2010)

    Google Scholar 

  11. Witte, M.G., Heemsbergen, W.D., et al.: Relating dose outside the prostate with freedom from failure in the dutch trial 68 gy vs. 78 gy. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 131–138 (2010)

    Article  Google Scholar 

  12. Bookstein, F.: ”Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14(6), 1454–1462 (2001)

    Article  Google Scholar 

  13. Ashburner, J., Friston, K.: Why voxel-based morphometry should be used. NeuroImage 14, 1238–1243 (2001); PMID: 11707080

    Article  Google Scholar 

  14. Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4), 870–878 (2002)

    Article  Google Scholar 

  15. Nichols, T.E., Holmes, A.P.: Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15(1), 1–25 (2002)

    Article  Google Scholar 

  16. Worsley, K., Evans, A., et al.: A three dimensional statistical analysis for cbf activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918 (1992)

    Article  Google Scholar 

  17. Hoover, D.R., Rice, J., et al.: Nonparametnc smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85, 809–822 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, H., Zhan, J.T.: Nonparametric Regression Methods for Longitudinal Data Analysis. John Wiley & Sons, Inc., New Jersey (2006)

    Google Scholar 

  19. Chen, Y., Guo, W.: A local nonparametric model for simultaneous image segementation and adaptive smooth. computational and applied mathematics technical report 07-34, UCLA (2007)

    Google Scholar 

  20. Roche, A., Mériaux, S., Keller, M., Thirion, B.: Mixed-effects statistics for group analysis in fMRI: A nonparametric maximum likelihood approach. Neuroimage 38, 501–510 (2007)

    Article  Google Scholar 

  21. Tibshirani, R., Hastie, T.: Local likelihood estimation. Journal of American Statistical Association 82, 559–567 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010) ISBN 3-900051-07-0

    Google Scholar 

  23. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D.: R Development Core Team: nlme: Linear and Nonlinear Mixed Effects Models (2010); R Package Version 3.1-97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ospina, J.D. et al. (2011). Spatial Nonparametric Mixed-Effects Model with Spatial-Varying Coefficients for Analysis of Populations. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics