Skip to main content

Automated Cephalometric Landmark Localization Using Sparse Shape and Appearance Models

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

  • 1946 Accesses

Abstract

In this paper an automated method is presented for the localization of cephalometric landmarks in craniofacial cone-beam computed tomography images. This method makes use of a statistical sparse appearance and shape model obtained from training data. The sparse appearance model captures local image intensity patterns around each landmark. The sparse shape model, on the other hand, is constructed by embedding the landmarks in a graph. The edges of this graph represent pairwise spatial dependencies between landmarks, hence leading to a sparse shape model. The edges connecting different landmarks are defined in an automated way based on the intrinsic topology present in the training data. A maximum a posteriori approach is employed to obtain an energy function. To minimize this energy function, the problem is discretized by considering a finite set of candidate locations for each landmark, leading to a labeling problem. Using a leave-one-out approach on the training data the overall accuracy of the method is assessed. The mean and median error values for all landmarks are equal to 2.41 \(\textrm{mm}\) and 1.49 \(\textrm{mm}\), respectively, demonstrating a clear improvement over previously published methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Swennen, G.R.J., Schutyser, F., Hausamen, J.-E.: Three-Dimensional Cephalometry, A Color Atlas and Manual. Springer, Heidelberg (2006)

    Book  Google Scholar 

  2. Swennen, G.R.J., Schutyser, F., Barth, E.L., De Groeve, P., De Mey, A.: A New Method of 3-D Cephalometry Part I: The Anatomic Cartesian 3-D Reference System. Journal of Craniofacial Surgery 17(2), 314–325 (2006)

    Article  Google Scholar 

  3. Leonardi, R., Giordano, D., Maiorana, F., Spampinato, C.: Automatic Cephalometric Analysis. Angle Orthod. 78(1), 145–151 (2009)

    Article  Google Scholar 

  4. Keustermans, J., Mollemans, W., Vandermeulen, D., Suetens, P.: Automated Cephalometric Landmark Identification using a Local Shape and Appearance Model. In: Proc. ICPR (2010)

    Google Scholar 

  5. Cheung, W., Hamarneh, G.: n-SIFT: n-dimensional scale invariant feature transform. IEEE Trans. Image Process. 18(9), 2012–2021 (2009)

    Article  MathSciNet  Google Scholar 

  6. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  7. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modelling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)

    Article  MATH  Google Scholar 

  8. Thodberg, H.H.: Minimum description length shape and appearance models. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 51–62. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Langs, G., Paragios, N.: Modeling the structure of multivariate manifolds: Shape maps. In: Proc. CVPR (2008)

    Google Scholar 

  10. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  11. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: MAP Estimation Via Agreement on Trees: Message-Passing and Linear Programming. IEEE Trans. Inf. Theory 51(11), 3697–3717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kolmogorov, V.: Convergent Tree-reweighted Message Passing for Energy Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  13. Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Minimized via Graph Cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2001)

    Article  MATH  Google Scholar 

  14. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion Moves for Markov Random Field Optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keustermans, J., Smeets, D., Vandermeulen, D., Suetens, P. (2011). Automated Cephalometric Landmark Localization Using Sparse Shape and Appearance Models. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics