Skip to main content

A Large-Scale Manifold Learning Approach for Brain Tumor Progression Prediction

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

Abstract

We present a novel manifold learning approach to efficiently identify low-dimensional structures, known as manifolds, embedded in large-scale, high dimensional MRI datasets for brain tumor growth prediction. The datasets consist of a series of MRI scans for three patients with tumor and progressed regions identified. We attempt to identify low dimensional manifolds for tumor, progressed and normal tissues, and most importantly, to verify if the progression manifold exists - the bridge between tumor and normal manifolds. By mapping the bridge manifold back to MRI image space, this method has the potential to predict tumor progression, thereby, greatly benefiting patient management. Preliminary results supported our hypothesis: normal and tumor manifolds are well separated in a low dimensional space and the progressed manifold is found to lie roughly between them but closer to the tumor manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauleit, D., Langen, K.J., et al.: Can the Apparent Diffusion Coefficient be Used as A Noninvasive Parameter to Distinguish Tumor Tissue from Peritumoral Tissue in Cerebral Gliomas? J. Magn. Reson. Imaging (20), 758–764 (2004)

    Article  Google Scholar 

  2. Bode, M.K., Ruohonen, J., et al.: Potential of Diffusion Imaging in Brain Tumors: A Review. Acta Radiol. (47), 585–594 (2006)

    Article  Google Scholar 

  3. Deshpande, A., Rademacher, L., et al.: Matrix approximation and projective clustering via Volume Sampling. In: Symposium on Discrete Algorithms, vol. (2), pp. 225–247 (2006)

    Google Scholar 

  4. Drineas, P., Mahomey, M.W.: On the Nystrom Method for Approximating a Gram Matrix for Improved Kernel-Based Learning. JMLR (6), 2153–2175 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Wang, S., Yao, J., et al.: Improved classifier for computer-aided polyp detection in CT colonography by nonlinear dimensionality reduction. Med. Phys. 35(4), 1377–1386 (2008)

    Article  Google Scholar 

  6. Silva, V., Tenenbaum, J.B.: Global Versus Local Methods in Nonlinear Dimensionality Reduction. In: NIPS, vol. 15, pp. 721–728 (2003)

    Google Scholar 

  7. Hatzikirou, H., Deutsch, A., et al.: Mathematical Modelling of Glioblastoma Tumor Developement: A Review. Mathematical Models and Methods in Applied Sciences 15(11), 1779–1794 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Murray, J.: Mathematical Biology. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  9. Atuegwu, N.C., et al.: The integration of quantitative multi-modality imaging data into mathematical models of tumors. Physics in Medicine and Biology 55, 2429–2449 (2010)

    Article  Google Scholar 

  10. Cobzas, D., Mosayebi, P., Murtha, A., Jagersand, M.: Tumor Invasion Margin on the Riemannian Space of Brain Fibers. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 531–539. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Zhang, Z., et al.: Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)

    Article  MATH  Google Scholar 

  12. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  13. Hartkens, T., Ruechert, D., et al.: VTK CISG Registration Toolkit: An open source software package for affine and non-rigid registration of single- and multimodal 3D images. In: Workshop Bildverarbeitung fur die Medizin, pp. 409–412 (2002)

    Google Scholar 

  14. Duda, R., Hart, P.: Pattern Classification and Scene Analysis, pp. 114–129 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran, L. et al. (2011). A Large-Scale Manifold Learning Approach for Brain Tumor Progression Prediction. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics