Skip to main content

DCE-MRI Analysis Using Sparse Adaptive Representations

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

  • 1945 Accesses

Abstract

Dynamic contrast-enhanced MRI (DCE-MRI) plays an important role as an imaging method for the diagnosis and evaluation of several diseases. Indeed, clinically relevant, per-voxel quantitative information may be extracted through the analysis of the enhanced MR signal. This paper presents a method for the automated analysis of DCE-MRI data that works by decomposing the enhancement curves as sparse linear combinations of elementary curves learned without supervision from the data. Experimental results show that performances in denoising and unsupervised segmentation improve over parametric methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agner, S., et al.: Segmentation and classification of triple negative breast cancers using DCE-MRI. In: Proc. IEEE ISBI 2009, pp. 1227–1230 (2009)

    Google Scholar 

  2. Aharon, M., et al.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11) (2006)

    Google Scholar 

  3. Alonzi, R., Padhani, A.R., Allen, C.: Dynamic contrast enhanced MRI in prostate cancer. Eur. J. Radiol. 63(3), 335–350 (2007)

    Article  Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Crum, W., et al.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE TMI 25(11), 1451–1461 (2006)

    Google Scholar 

  6. Damasio, M.B., Malattia, C., Martini, A., Tomà, P.: Synovial and inflammatory diseases in childhood: role of new imaging modalities in the assessment of patients with juvenile idiopathic arthritis. Pediatric Radiology 40(6), 985–998 (2010)

    Article  Google Scholar 

  7. Guo, J., Reddick, W.: DCE-MRI pixel-by-pixel quantitative curve pattern analysis and its application to osteosarcoma. Journal of MR 30(1), 177–184 (2009)

    Google Scholar 

  8. Harris, N., Gauden, V., Fraser, P., Williams, S., Parker, G.: MRI measurement of blood-brain barrier permeability following spontaneous reperfusion in the starch microsphere model of ischemia. Magnetic Resonance Imaging 20(3), 221–230 (2002)

    Article  Google Scholar 

  9. Kubassova, O., Boesen, M., Boyle, R.D., Cimmino, M.A., Jensen, K.E., Bliddal, H., Radjenovic, A.: Fast and robust analysis of dynamic contrast enhanced MRI datasets. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 261–269. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Lavini, C., et al.: Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magnetic Resonance Imaging 25(5), 604–612 (2007)

    Article  Google Scholar 

  11. Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, NIPS 2006, vol. 19 (2006)

    Google Scholar 

  12. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  14. Schmid, V.J., et al.: Quantitative analysis of dynamic contrast-enhanced MR images based on bayesian p-splines. IEEE TMI 28(6), 789–798 (2009)

    Google Scholar 

  15. Staglianò, A., Chiusano, G., Basso, C., Santoro, M.: Learning adaptive and sparse representations of medical images. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 130–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Vivier, P., Blondiaux, E., Dolores, M., Marouteau-Pasquier, N., Brasseur, M., Petitjean, C., Dacher, J.: Functional mr urography in children. J. Radiol. (2009)

    Google Scholar 

  17. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801 (June 2009)

    Google Scholar 

  18. Zöllner, F.G., et al.: Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Computerized Medical Imaging and Graphics 33(3), 171–181 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiusano, G., Staglianò, A., Basso, C., Verri, A. (2011). DCE-MRI Analysis Using Sparse Adaptive Representations. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics